DOI QR코드

DOI QR Code

The Structural and Optical Properties with Composition Variation of CdxZn1-xO Thin Films Prepared by Sol-Gel Method

Sol-Gel 방법으로 제작된 CdxZn1-xO 박막의 조성비에 따른 구조적 및 광학적 특성

  • Cheon, Min Jong (School of Nano Engineering, Inje University) ;
  • Kim, Soaram (School of Nano Engineering, Inje University) ;
  • Nam, Giwoong (School of Nano Engineering, Inje University) ;
  • Yim, Kwang Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Leem, Jae-Young (School of Nano Engineering, Inje University)
  • 천민종 (인제대학교 나노공학부) ;
  • 김소아람 (인제대학교 나노공학부) ;
  • 남기웅 (인제대학교 나노공학부) ;
  • 임광국 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 김민수 (인제대학교 나노메뉴팩쳐링연구소 나노시스템공학과) ;
  • 임재영 (인제대학교 나노공학부)
  • Received : 2011.03.30
  • Published : 2011.07.25

Abstract

$Cd_xZn_{1-x}O$ thin films were grown on quartz substrates by using the sol-gel spin-coating method. The mole fraction, x, of the $Cd_xZn_{1-x}O$ thin films was controlled from 0 to 1 by changes in the content ratio of the cadmium acetate dehydrate [$Cd{(CH_3COO)}_2{\cdot}2H_2O$] and zinc acetate dehydrate [$Zn{(CH_3COO)}_2{\cdot}2H_2O$]. The effects of the mole fraction on the morphological, structural, and optical properties of the $Cd_xZn_{1-x}O$ thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible spectroscopy. The $Cd_xZn_{1-x}O$ thin films exhibited the polygonal surface morphology and their grain size was increased ranging from 42.1 to 63.9 nm with the increase in the mole fraction. It was observed that the absorption bandgap of the $Cd_xZn_{1-x}O$ thin films decreased from 3.25 to 2.16 eV as the mole fraction increased and the Urbach energy ($E_U$) values changed inversely to the optical bandgap of the $Cd_xZn_{1-x}O$ thin films.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. Nanto, T. Minami, S. Shooji, and S. Tokato, J. Appl. Phys. 55, 1029 (1984). https://doi.org/10.1063/1.333196
  2. T. Minami, H. Nanto, and S. Takata, Thin Solid Films 124, 43 (1985). https://doi.org/10.1016/0040-6090(85)90026-4
  3. P. Petrou, R. Singh, and D. E. Brodie, Appl. Phys. Lett. 35, 930 (1979). https://doi.org/10.1063/1.91009
  4. C. Sravani, K. T. R. Reddy, and P. J. Reddy, Semicond. Sci. Technol. 6, 1036 (1991). https://doi.org/10.1088/0268-1242/6/10/016
  5. J. Hu and R. G. Gordon, J. Appl. Phys. 71, 880 (1992). https://doi.org/10.1063/1.351309
  6. H. Sato, T. Minami, T. Miyata, S. Takata, and M. Ishii, Thin Solid Films 246, 65 (1994). https://doi.org/10.1016/0040-6090(94)90733-1
  7. J. Aranovich, A. Ortiz, R. H. Bude, and J. Aranovich, J. Vac. Sci. Technol. 16, 994 (1979). https://doi.org/10.1116/1.570167
  8. B. Yu, J. Han, and O. Song, Kor. J. Met. Mater. 48, 1109 (2010).
  9. M. Fukuda, Optical Semiconductor Devices, p. 93-210, John Wiley & Sons, New York, (1998).
  10. M. Tortosa, M. Mollar, and B. Mar , J. Cryst. Growth 304, 97 (2007). https://doi.org/10.1016/j.jcrysgro.2007.02.010
  11. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schäfer, and F. Henneberger, Appl. Phys. Lett. 89, 201907 (2006). https://doi.org/10.1063/1.2388250
  12. H. Tabet-Derraz, N. Benramdane, D. Nacer, A. Bouzidi, and M. Medles, Sol. Energy Mater. Sol. Cells. 73, 249 (2002). https://doi.org/10.1016/S0927-0248(01)00134-9
  13. F. Cruz-Gandarilla, A. Morales-Acevedo, O. Vigil, M. Hesiquio-Gardu o, L. Vaillant, and G. Contreras-Puente, Mater. Chem. Phys. 78, 840 (2003). https://doi.org/10.1016/S0254-0584(02)00395-4
  14. G. Torres-Delgado, C. I. Zuniga-Romero, O. Jimenez-Sandoval, R. Castanedo-Perez, B. Chao, and S. Jimenez-Sandoval, Adv. Funct. Mater. 12, 129 (2002). https://doi.org/10.1002/1616-3028(20020201)12:2<129::AID-ADFM129>3.0.CO;2-V
  15. S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, Int. J. Hydrog. Energy 34, 5201 (2008).
  16. Y. Caglar, M. Caglar, S. Ilican, and A. Ates, J. Phys. D. 42, 065421 (2009). https://doi.org/10.1088/0022-3727/42/6/065421
  17. Y. S. Choi, C. G. Lee, and S. M. Cho, Thin Solid Films 289, 153 (1996). https://doi.org/10.1016/S0040-6090(96)08923-7
  18. H. S. Kang, J. W. Kim, J. H. Kim, S. Y. Lee, Y. Li, J. -S. Lee, J. K. Lee, M. A. Nastasi, S. A. Crooker, and Q. X. Jia, J. Appl. Phys. 99, 066113 (2006). https://doi.org/10.1063/1.2186372
  19. T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Christen, and M. Schreck, Appl. Phys. Lett. 83, 3290 (2003). https://doi.org/10.1063/1.1620674
  20. J. Zuniga-Perez, V. Munoz-Sanjose, M. Lorenz, G. Benndorf, S. Heitsch, D. Spemann, and M. Grundmann, J. Appl. Phys. 99, 023514 (2006). https://doi.org/10.1063/1.2163014
  21. A. A. Dakhel and F. Z. Henari, Cryst. Res. Technol. 38, 979 (2003). https://doi.org/10.1002/crat.200310124
  22. R. S. Rusu and G. I. Rusu, J. Optoelectron. Adv. Mater. 7, 823 (2005).
  23. J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Ind. Eng. Chem. Anal. Ed. 10, 457 (1938). https://doi.org/10.1021/ac50125a001
  24. M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, J. Vac. Sci. Technol. A 14, 2220 (1996). https://doi.org/10.1116/1.580050
  25. N. Kavasoglu, A. S. Kavasoglu, and S. Oktik, J. Phys. Chem. Solids 70, 521 (2009). https://doi.org/10.1016/j.jpcs.2008.11.018
  26. A. Seval, Y. Caglar, S. Ilican, and M. Caglar, J. Hydrog. Energy. 34, 5191 (2009). https://doi.org/10.1016/j.ijhydene.2008.09.057
  27. F. Urbach, Phys. Rev. 92, 1324 (1953).
  28. S. K. O'Leary, S. Zukotynski, and J. M. Perz, J. Non-Cryst. Solids 210, 249 (1997). https://doi.org/10.1016/S0022-3093(96)00612-6