DOI QR코드

DOI QR Code

Effects of an External Magnetic Field on the Magnetic Properties of Sputtered Magnetic Thin Films

스퍼터링 중 외부자기장이 자성박막의 자기적 특성에 미치는 영향

  • Ahn, Hyun Tae (Opto-electronic Materials Center, Korea Institute of Science & Technology, Department of Materials Science and Engineering, Korea University) ;
  • Lim, Sang Ho (Department of Materials Science and Engineering, Korea University) ;
  • Jee, Kwang Koo (Opto-electronic Materials Center, Korea Institute of Science & Technology) ;
  • Han, Jun Hyun (Department of Nano Materials Engineering, Chungnam National University)
  • 안현태 (한국과학기술연구원 광전자재료센터, 고려대학교신소재공학부) ;
  • 임상호 (고려대학교 신소재공학부) ;
  • 지광구 (한국과학기술연구원 광전자재료센터) ;
  • 한준현 (충남대학교 나노소재공학과)
  • Received : 2010.09.15
  • Published : 2011.06.25

Abstract

A magnetic device which enables the application of a strong and uniform magnetic field to thin film during sputtering was designed for controlling the magnetic anisotropy using a three dimensional finite element method, and the effects of the external magnetic field on the magnetic properties of sputtered thin films were investigated. Both the intensity and the uniformity of the magnetic flux density in the sputter zone (50 mm ${\times}$50 mm) was dependent on not only the shape and size of the magnet device but also the magnitude of stray fields from the magnet. For the magnet device in which the distance between two magnets or two pure iron bars was 80-90 mm, the magnetic flux density along the direction normal to the external magnetic field direction was minimum. The two row magnets increased the magnetic flux density and uniformity along the external magnetic field direction. An Fe thin film sputtered using the optimized magnet device showed a higher remanence ratio than that fabricated under no external magnetic field.

Keywords

Acknowledgement

Grant : 소재원천기술개발사업

Supported by : 지식경제부

References

  1. S. J. Murray, M. Marioni, S. M .Allen, T. A. Lograsso, and R. C. O'Handley, Appl. Phys. Lett. 77, 886 (2000). https://doi.org/10.1063/1.1306635
  2. K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, and V. K. Lindroos, Scripta mater. 44, 475 (2001). https://doi.org/10.1016/S1359-6462(00)00610-2
  3. N. Yoshikawa, T. Endo, S. Taniguchi, S. Awaji, K. Watanabe, and E. Aoyagi, J. Mater. Res. 17, 31 (2002). https://doi.org/10.1557/JMR.2002.0007
  4. C. Wang, Q. Wang, Z. Wang, H. Li, K. Nakajima, and J. He, J. Crystal Growth 310, 1256 (2008). https://doi.org/10.1016/j.jcrysgro.2007.12.045
  5. P. Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. lngoldt, P. Germit, and M. Pernet, Nature 349, 770 (1991). https://doi.org/10.1038/349770a0
  6. B.A. Legrand, D. Chateigner, R. Perrier de la Bathie, and R. Tournier, J. Magn. Magn. Mater. 173, 20 (1997). https://doi.org/10.1016/S0304-8853(97)00149-2
  7. Y.H. Choa, T. Nakayama, T. Sekino, and K. Niihara, Met. & Mater. 5, 135 (1999). https://doi.org/10.1007/BF03026043
  8. G. A. Fischer and M. L. Rudee, J. Magn. Magn. Mater. 213, 335 (2000). https://doi.org/10.1016/S0304-8853(00)00007-X
  9. B. G. Kim, S. D. Park, and S. S. Kim, Met. Mater. Int. 10, 559 (2004) https://doi.org/10.1007/BF03027419
  10. H. Shokrollahi and K. Janghorban, J. Magn. Magn. Mater. 317, 61 (2007). https://doi.org/10.1016/j.jmmm.2007.04.011
  11. T. E. Sheridan, M. J. Goeckner, and J. Goree, J. Vac. Sci. Technol. A5, 30 (1990).
  12. I. Ivanov, P. Kazansky, L. Hultman, I. Pertov, and J. E. Sundgran, J. Vac. Sci. Technol. A12, 314 (1994).