DOI QR코드

DOI QR Code

Properties of ZnO/TiO2 Bilayer Thin Films with a Low Temperature ALD Process

저온 원자층증착법으로 제조된 ZnO/TiO2 나노이층박막의 물성 연구

  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Han, Jeungjo (Department of Materials Science and Engineering, University of Seoul) ;
  • Yu, Byungkwan (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 한정조 (서울시립대학교 신소재공학과) ;
  • 유병관 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2011.03.21
  • Published : 2011.06.25

Abstract

We examined the microstructure and optical properties of crystallized ~30 nm-ZnO/~10 nm amorphous $TiO_2$ nano bilayered films as nano electrodes were deposited at extremely low substrate temperatures of $150-210^{\circ}C$. The bilayered films were deposited on silicon substrates with 10 cm diameters by ALD (atomic layer deposition) using DEZn (diethyl zinc(Zn(C2H5)2)) and TDMAT (tetrakis dimethyl-amid $titanium(Ti(N(CH_3)_2)_4)$ as the ZnO and $TiO_2$ precursors, respectively, and $H_2O$ as the oxidant. The microstructure, phase, and optical properties of the bilayered films were examined by FE-SEM, TEM, XRD, AES, and UV-VIS-NIR spectroscopy. FE-SEM and TEM showed that all bilayered films were deposited very uniformly and showed crystallized ZnO and amorphous $TiO_2$ layers. AES depth profiling showed that the ZnO and $TiO_2$ films had a stoichiometric composition of 1:1 and 1:2, respectively. These bilayered films have optical absorption properties in a wide range of ultraviolet wavelengths, 250-390 nm, whereas the single ZnO and $TiO_2$ films showed an absorption range of 350-380nm.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. Grtzel, Nature. 414, 338 (2001). https://doi.org/10.1038/35104607
  2. K. Kim, G. Lee, K. Yoo, D. Kim, J. Kim, and N. Park, J. of Photochem. Photobiol. A: Chemistry. 204, 144 (2009). https://doi.org/10.1016/j.jphotochem.2009.03.008
  3. J. Chang, J. Rhee, S. Im, Y. Lee, Y. Lee, H. Kim, S. Seok, Md. K. Nazeeruddin, and M. Gratsel, Nano Lett. 10, 2609 (2010). https://doi.org/10.1021/nl101322h
  4. K. Jiang, K. Manseki, Y. Yu, N.Masaki, K. Suzuki, Y. Song, and S. Yanagida, Adv. Funct. Mater. 19, 2481 (2009). https://doi.org/10.1002/adfm.200900283
  5. J. M. Macak, H. Tsuchiya, and P. S. Angew, Chem. Int. Ed. 44, 2100 (2005). https://doi.org/10.1002/anie.200462459
  6. M. Adachi, Y. Murata, M. Harada, and S. Yoshikawa, Chem. Lett. 29, 942 (2000).
  7. S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai Electrochemistry. 70, 418 (2002).
  8. M. Langlet, A. Kim, M. Audier, C. Guillard, and J. M. Herrmann, Thin Solid Films. 492, 13 (2003).
  9. J. S. Park, J. J. Han, and O. S. Song, Kor. J. Met. Mater. 48, 449 (2010). https://doi.org/10.3365/KJMM.2010.48.05.449
  10. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001). https://doi.org/10.1063/1.1394173
  11. P. Nunes, E. Fortunato, P. Tonello, F. Brazfernandes, P. Vilarinho, and R. Ma rtins, Vacuum. 64, 281 (2002). https://doi.org/10.1016/S0042-207X(01)00322-0
  12. G. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, J. Euro. Ceram. Soc. 241, 246 (2004).
  13. Q. Zhang, C. S. Dandeneau, S. Candelaria, D. Liu, G. Betzaida, B. Garcia, X. Zhou, J. Y. Ha, and G. Cao, Chem. Mater. 22, 2427 (2010). https://doi.org/10.1021/cm9009942
  14. A. Solbrand, K. Keis, S. Sodergren, H. Lindstrom, A. Hagfeldt, and S.-E. Lindquist Sol. Energy Mater. Sol. Cells. 60, 181 (2000). https://doi.org/10.1016/S0927-0248(99)00083-5
  15. K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, langmuir. 16, 4688 (2000). https://doi.org/10.1021/la9912702
  16. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. D. Tilley, and A. M. Venezia, J. Phys. Chem. B. 105, 1026 (2001). https://doi.org/10.1021/jp003172r
  17. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005). https://doi.org/10.1038/nmat1387
  18. R. S. Mane, W. J. Lee, H. M. Pathan, and S. H. Han, J. Phys. Chem. B. 109, 24254 (2005). https://doi.org/10.1021/jp0531560
  19. S. J. Roh, R. S. Mane, S. Ki. Min, W. Joo. Lee, C. D. Lokhande, and S. H. Han, Appl. Phys. Lett. 89, 253512 (2006). https://doi.org/10.1063/1.2410240
  20. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, J. Am. Chem. Soc. 125, 475 (2003). https://doi.org/10.1021/ja027945w
  21. A. Kitiyanan and S. Yoshikawa, Mater. Lett. 59, 4038 (2005). https://doi.org/10.1016/j.matlet.2005.07.080
  22. K. Eguchi, H. Koga, K. Sekizawa, and K. Sasaki, J. Ceram. Soc. Jpn. 108, 1067 (2000). https://doi.org/10.2109/jcersj.108.1264_1067
  23. B. K. Yu, J. J. Han, and O. S. Song, Kor. J. Met. Mater. 48, 1109 (2010).
  24. C. A. Wilson, R. K. Grubbs, and S. M. George, Chem. Mater. 17, 5625 (2005). https://doi.org/10.1021/cm050704d
  25. S. T. Tan, B. J. Chen, X. W. Sun, and W. J. Fan, Phys. Lett. 98, 013505 (2005).
  26. J. J. Han, K. J. Yoon, O. S. Song, and J. H. Ryu, KAIS. 8, 726 (2007).