DOI QR코드

DOI QR Code

Synthesis and Formation Mechanism of ZnO Nanotubes via an Electrochemical Method

전기화학적 방법에 의한 산화아연 나노튜브의 합성과 형성 기구

  • Moon, Jin Young (School of Materials Science and Engineering, Kyungpook National University) ;
  • Kim, Hyunghoon (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Ho Seong (School of Materials Science and Engineering, Kyungpook National University)
  • 문진영 (경북대학교 공과대학 신소재공학부) ;
  • 김형훈 (경북대학교 공과대학 신소재공학부) ;
  • 이호성 (경북대학교 공과대학 신소재공학부)
  • Received : 2010.12.24
  • Published : 2011.05.25

Abstract

ZnO nanotube arrays were synthesized by a two-step process: electrodeposition and selective dissolution. In the first step, ZnO nanorod arrays were grown on an Au/Si substrate by using a homemade electrodeposition system. ZnO nanorod arrays were then selectively dissolved in an etching solution composed of 0.125 M NaOH, resulting in hollow ZnO nanotube arrays. It is suggested that the formation mechanism of the ZnO nanotube arrays might be attributed to the preferred surface adsorption of hydroxide ion ($OH^{-1}$) on a positive polar surface followed by selective dissolution of the metastable Zn-terminated ZnO (0001) polar surface caused by the difference in the surface energy per unit area between the ZnO nanorod and nanotube.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zuniga Perez. C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Berhrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Bookos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, Nanotechnology 20, 332001 (2009). https://doi.org/10.1088/0957-4484/20/33/332001
  2. R. Konenkamp, R. C. Word, and C. Schiegel, Appl. Phys. Lett. 85, 6004 (2004). https://doi.org/10.1063/1.1836873
  3. G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, Appl. Phys. Lett. 94, 051106 (2009) . https://doi.org/10.1063/1.3077011
  4. J. Yoo, C. H. Lee, Y. J. Doh, H. S. Jung, and G. C. Yi, Appl. Phys. Lett. 94, 223117 (2009). https://doi.org/10.1063/1.3148666
  5. B. Pradhan, S. K. Batabyal, and A. J. Pal, Solar Energy Materials & Solar Cells 91, 769 (2007). https://doi.org/10.1016/j.solmat.2007.01.006
  6. X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004). https://doi.org/10.1021/nl035102c
  7. S. Li, X. Zhang, B. Yan, and T. Yu, Nanotechnology 20, 495604 (2009). https://doi.org/10.1088/0957-4484/20/49/495604
  8. I. Levin, A. Davydov, B. Nikoobakht, N. Sanford, and P. Mogilevsky, Appl. Phys. Lett. 87, 103110 (2005). https://doi.org/10.1063/1.2041832
  9. K. P. Misra, R. K. Shukla, A. Srivastava, and A. Srivastava, Appl. Phys. Lett. 95, 031901 (2009). https://doi.org/10.1063/1.3184789
  10. Y. L.-Wang, S. Bouchaib, T. Brouri, M. Capo-Chichi, K. Laurent, J. Leopoldes, S. Tusseau-Nenez, L. Lei, and Y. Chen, Mater. Sci. Eng. B 70, 107 (2010).
  11. M. Izaki and T. Omi, J. Electrochem. Soc. 143, L53 (1996). https://doi.org/10.1149/1.1836529
  12. S. Peulon and D. Lincot, Adv. Mater. 8, 166 (1996). https://doi.org/10.1002/adma.19960080216
  13. M. H. Wong, A. Berenov, X. Qi, M. J. Kappers, Z. H. Barber, B. Illy, Z. Lockman, M. P. Ryan, and J. L. MacManus-Driscoll, Nanotechnology 14, 968 (2003). https://doi.org/10.1088/0957-4484/14/9/306
  14. J. H. Kim, J. Y. Moon, H. S. Lee, B. H. Kong, H. K. Cho, E. S. Jung, H. S. Kim, and T. W. Kim, J. Korean Phys. Soc. 52, 1061 (2008). https://doi.org/10.3938/jkps.52.1061
  15. G. Zhang, A. Nakamura, T. Aoki, J. Temmyo, and Y. Matsui, Appl. Phys. Lett. 89, 113112 (2006). https://doi.org/10.1063/1.2207832
  16. A. J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang, and W. Lee, Appl. Phys. Lett. 92, 092113 (2008). https://doi.org/10.1063/1.2889502
  17. T. G. Woo, I. S. Park, W. Y. Jeon, E. K. Park, K. H. Jung, H. W. Lee, M. H. Lee, and K. W. Seol, Kor. J. Met. Mater. 48, 951 (2010). https://doi.org/10.3365/KJMM.2010.48.10.951
  18. B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, J. Phys. Chem. B 108, 10899 (2004). https://doi.org/10.1021/jp048602i
  19. C. L. Cheng, J. S. Lin, and Y. F. Chen, J. Alloys Compd. 476, 903 (2009). https://doi.org/10.1016/j.jallcom.2008.09.132
  20. Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, M. Li, S. Liu, Y. Sui, Z. Liu, M. Yuan, and G. Zou, J. Phys. Chem. C 111, 17521 (2007). https://doi.org/10.1021/jp076159g
  21. G. She, X. Zhang, W. Shi, X. Fan, J. C. Chang, C. Lee, S. Lee, and C. Liu, Appl. Phys. Lett. 92, 053111 (2008). https://doi.org/10.1063/1.2842386
  22. G. She, X. Zhang, W. Shi, X. Fan, and J. C. Chang, Electrochem. Commun. 9, 2784 (2007). https://doi.org/10.1016/j.elecom.2007.09.019
  23. J. Elias, R. Tena-Zaera, G. Wang, and C. Levy-Clement, Chem. Mater. 20, 6633 (2008). https://doi.org/10.1021/cm801131t
  24. H. Kim, J. Y. Moon, and H. S. Lee, Electron. Mater. Lett. 5, 135 (2009).
  25. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd ed., p. 990-1002, Wiley, New York (1996).
  26. G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragala, and M. Losurdo, Adv. Mater. 21, 1700 (2009). https://doi.org/10.1002/adma.200802579
  27. M. Kim, Y. J. Hong, J. Yoo, G. Yi, G. Park, K. Kong, and H. Chang, Phys. Stat. Sol. (RRL) 2, 197 (2008). https://doi.org/10.1002/pssr.200802084