DOI QR코드

DOI QR Code

Strengthening Mechanism of the Ni3Al-based Alloy

Ni3Al계 합금의 강화기구

  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
  • 한창석 (호서대학교 국방과학기술학과)
  • Received : 2010.10.27
  • Published : 2011.02.25

Abstract

Strengthening mechanisms in an ordered intermetallic compound containing coherent precipitates of lower antiphase boundary energy than the matrix were investigated on the basis of the interaction between the deformation induced dislocations and the disordered precipitates in an $Ll_2$ ordered $Ni_3Al$-based alloy. Extra work was needed to pull out the dislocations from the precipitate, which was dependent on the difference in the antiphase boundary energy between the matrix and the precipitate, as well as the size and volume fraction of the precipitate. The strength of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase containing fine precipitates of the disordered ${\gamma}$ phase was examined using the proposed model. The model can explain almost quantitatively the age hardening behavior of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase.

Keywords

References

  1. D. H. Chun, M. C. Kim, M. H. Oh, D. M. Wee, Y. Xu, M. Demura, K. Kishida, and T. Hirano, J. Kor. Inst. Met. & Mater. 43, 801 (2005).
  2. H. J. Kim and M. Niinomi, Mater. Sci. & Eng. A284, 14 (2000).
  3. C. J. Yoo, C. Y. Jo, H. C. Kim, C. G. Lee, and J. H. Lee, J. Kor. Inst. Met. & Mater. 39, 616 (2001).
  4. A. J. Ardell, Met. Trans. 16A, 2131 (1985).
  5. C. H. Yang, S. S. Kim, C. S. Lee, and K. S. Shin, J. Kor. Inst. Met. & Mater. 35, 1302 (1997).
  6. T. Morimura, M. Hasaka, and A. Nagata, J. Alloys and Compounds. 347, 141 (2002). https://doi.org/10.1016/S0925-8388(02)00769-7
  7. A. J. Ardell and S. Pattanaik, Phil. Mag. A 50, 339 (1984).
  8. A. J. Ardell and S. Pattanaik, Phil. Mag. A 50, 361 (1984).
  9. B. H. Kear, J. E. Doherty, A. F. Giamei, and L. P. Lemaire, Proc. 30th Ann. Meeting Electron Microscopy Society of America, 588 (1972).
  10. R. K. Ham, R. H. Cook, and G. R. Purdy, J. Metal Sci. 6, 73 (1972). https://doi.org/10.1179/030634572790446064
  11. R. K. Ham, R. H. Cook, G. R. Purdy, and G. Willoughby, J. Metal Sci. 6, 205 (1972). https://doi.org/10.1179/030634572790446118
  12. C. S. Han, J. Kor. Soc. Heat Treat. 19, 249 (2006).
  13. C. S. Han, Met. Mater. Int. 13, 31 (2007). https://doi.org/10.1007/BF03027820
  14. C. S. Han and J. Lee, J. Kor. Soc. Heat Treat. 21, 251 (2008).
  15. E. Orowan, Symp. on Internal Stresses in Metals, Institute of Metals, London, 451 (1948).
  16. P. B. Hirsch and A. Kelly, Phil. Mag. 12, 881(1965). https://doi.org/10.1080/14786436508228118
  17. K. Yashiro, J. R. Pangestu, and Y. Tomita, J. Soc. Mater. Sci. Jap. 56, 439 (2007). https://doi.org/10.2472/jsms.56.439
  18. A. Kelly and R. B. Nicholson, Prog. Mat. Sci. 10, 149 (1963).
  19. J. Friedel, Dislocations, Pergamon Press, Oxford. (1964).
  20. Y. Liu, T. Takasugi, O. Izumi, and H. Ohta, Phil. Mag. Letters. 58, 81 (1988). https://doi.org/10.1080/09500838808214735
  21. C. Egle, M. Guy, and C. Daniel, Phil. Mag. 85, 117 (2005). https://doi.org/10.1080/14786430412331315626
  22. D. Baither, C. Rentenberger, and H. P. Karnthaler, Phil. Mag. A 82, 1795 (2002).
  23. A. Korner, Phil. Mag. A 58, 507 (1988). https://doi.org/10.1080/01418618808210427