Identification of Enhanced Resistance to Abiotic Stress Induced by Methyl Viologen in Progeny from a Cross of Transgenic Lines of Petunia

  • Lee, Su Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Jung Lim (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Seung Tae (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Eun Kyung (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, O Hyeon (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Won Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2011.08.25
  • Accepted : 2011.11.08
  • Published : 2011.12.30

Abstract

This study was conducted to investigate the resistance to abiotic stress in the progeny obtained by a cross between NDPK2-transgenic line (NDPK2-7-1) and MnSOD (SOD2) transgenic line (SOD2-2-1-1-35) to develop transgenic petunia highly resistant to environmental stress. At the treatment of 100 and $200{\mu}M$ methyl viologene (MV), the progeny was significantly less damaged than its parental plants (SOD2- or NDPK2-transgenic lines) as well as non-transgenic plants, implying its resistance to oxidative stress enhanced than SOD2- or NDPK2-transgenic plants. In an expression of 11 quantitative traits, the progeny remained similar to control plants, although it infrequently displayed slightly longer or wider than non-transgenic control plants. In the color and shape of flowers, there was no significant difference between the progeny and its parents or non-transgenic control.

본 연구는 환경스트레스 저항성이 증진된 페튜니아를 개발하기 위하여 NDPK2유전자 도입 형질전환 계통 NDPK2-7-1와 SOD2 유전자 도입 형질전환 계통 SOD2-2-1-1-35간의 교잡에 의해 획득된 후대들의 비생물적 스트레스 저항성을 조사하기 위해 수행되었다. 비생물적 스트레스 유발원인 메틸바이올로젠(methyl viologen, MV) $100{\mu}M$$200{\mu}M$ 처리에서 교잡후대들은 그들의 교배모본 SOD2 유전자나 NDPK2 유전자가 단독으로 도입된 형질전환 계통이나 비형질전환체 보다 메틸바이올로젠에 의한 피해를 적게 받았다. 이는 SOD2 유전자나 NDPK2 유전자가 단독으로 도입된 형질전환 계통간 교잡에 의해 획득된 후대들이 그들의 교배모본 (SOD2 유전자나 NDPK2 유전자가 단독으로 도입된 형질전환 계통)이나 비형질전환체 보다 산화적 스트레스에 대한 저항성이 증진되었음을 증명해 준다고 할 수 있다. 이들 교잡후대들은 초장 등 11종류의 양적형질의 특성이 비형질전환체에 비해 약간 길거나 짧긴 하였지만 비형질전환체와 거의 유사하였으며, 꽃 색갈이나 모양 또한 그들의 교배모본 (SOD2 유전자나 NDPK2 유전자가 단독으로 도입된 형질전환 계통)이나 비형질전환체와 차이가 없었다.

Keywords

References

  1. Clark, D.G., C. Dervinis, J.E. Barrett, H. Klee, and M. Jones. 2004. Drought-induced leaf senescence and horticultural performance of transgenic $P_{SAG12}$-ipt petunias. J. Amer. Soc. Hort. Sci. 129:93-99.
  2. Fang, G.C., R.M. Hanau, and L.J. Vaillancourt. 2002. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant pathogenic fungus Colletotrichum graminicola. Fungal Genet. Biol. 36:155-165. https://doi.org/10.1016/S1087-1845(02)00008-7
  3. Francois, I.E.J.A., W.F. Broekaert, and B.P.A. Cammue. 2002. Different approaches for multi-transgene-stacking in plants. Plant Sci. 163:281-295. https://doi.org/10.1016/S0168-9452(02)00130-9
  4. Han, B.H., E.J. Suh, S.Y. Lee, H.K. Shin, and Y.P. Lim. 2007. Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendranthema x grandiflorum (Ramat.) Kitamura) 'Shuho-no-chikara'. Scientia Hort. 115:70-75. https://doi.org/10.1016/j.scienta.2007.07.012
  5. Han, B.H., S.Y. Lee, and E.J. Hur. 2008. Selection of early flowering plants after transformation by a DgLsL anti-sense partial gene in chrysanthemum 'Zinba'. Kor. J. Hort. Sci. Tech. 26 (Supple. II):64-69.
  6. Kim, J.S., B.H. Lee, S.Y. Kwon, Y.H. Kim, S.H. Kim, and K.Y. Cho. 2005. Antioxidative responses of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts to several herbicides. Kor. J. Plant Biotech. 32:97-103. https://doi.org/10.5010/JPB.2005.32.2.097
  7. Kim, K.U., D.U. Kim, and S.T. Kwon. 1986. Development of herbicide (paraquat) tolerant plant through tissue culture. Korea. J. Weed Sci. 61:191-200.
  8. Kwon, D.Y., Y.I. Jeong, H.S. Lee, J.S. Kim, K.Y. Cho, R.D. Allen, and S.S. Kwak. 2002. Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant, Cell Environ. 25:873-882. https://doi.org/10.1046/j.1365-3040.2002.00870.x
  9. Lee, S.Y., B.H. Han, and A.Y. Cho. 2009a. Inheritance and expression of transgene in SOD2-transgenic petunia descendants and their morphological traits. Kor. J. Plant Biotech. 36:289-29. https://doi.org/10.5010/JPB.2009.36.3.289
  10. Lee, S.Y., B.H. Han, E.W. Noh, and S.S. Kwak. 2009b. Transfer of SOD2 or NDP kinase 2 genes into purebred lines of petunia. Kor. J. Plant Biotech. 36:144-148. https://doi.org/10.5010/JPB.2009.36.2.144
  11. Lee, S.Y., B.H. Han, Y.T. Kim, and J.S. Kim. 2010. Resistance of SOD2-Transgenic Petunia Line to Oxidative Stress. Kor. J. Plant Biotech. 37:532-566.
  12. Lim, S., Y.H. Kim, S.H. Kim, S.Y. Kwon, H.S. Lee, J.S. Kim, K.Y. Cho, K.Y. Paek, and S.S. Kwak. 2007. Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologenmediated oxidative stress and chilling. Mol. Breeding 19:227-239. https://doi.org/10.1007/s11032-006-9051-0
  13. Moon, H., B. Lee, G. Choi, D. Shin, D.T. Prasad, O. Lee, S.S. Kwak, D.H. Kim, J. Nam, J. Bahk, J.C. Hong, S.Y. Lee, M.J. Cho, C.O. Lim, and D.J. Yun. 2003. NDP kinase 2 interacts with two oxidative stress-activated MARKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. 100:358-363. https://doi.org/10.1073/pnas.252641899
  14. Rural Development Administration (1995) Standard for survey in agricultural experiment & research. pp.388-390.
  15. Suntres, Z. 2002. Role of antioxidants in paraquat toxicity. Toxicology 180:65-77. https://doi.org/10.1016/S0300-483X(02)00382-7
  16. Tang, L., S.Y. Kwon, M.D. Kim, J.S. Kim, S.S. Kwak, and H.S. Lee. 2007. Enhanced tolerance to oxidative stress of transgenic potato (cv. Superior) plants expressing SOD and APX in chloroplasts. Kor. J. Plant Biotech. 34:299-305. https://doi.org/10.5010/JPB.2007.34.4.299
  17. Tang, L., S.Y. Kwon, D.J. Yun, S.S. Kwak, and H.S. Lee. 2004a. Selection of transgenic potato plants expressing NDP Kinase 2 gene with enhanced tolerance to oxidative stress. Kor. J. Plant Biotech. 31:19-195. https://doi.org/10.5010/JPB.2004.31.3.191
  18. Tang, L., S.Y. Kwon, S.S. Kwak, C.K. Sung, and H.S. Lee. 2004b. Selection of transgenic potato plants expressing both CUZNSOD and APX in chloroplasts with enhanced tolerance to oxidative stress. Kor. J. Plant Biotech. 31:109-113. https://doi.org/10.5010/JPB.2004.31.2.109
  19. Tang, L., M.D. Kim, K.S. Yang, S.Y. Kwon, S.H., Kim, J.S. Kim, D.J. Yun, S.S. Kwak, and H.S. Lee. 2008. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res. 17:705-715. https://doi.org/10.1007/s11248-007-9155-2
  20. Tseng, M.J., C.W. Liu, and J.C. Yiu. 2008. Tolerance to sulfur dioxide in Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of Escherichia coli. Sci. Hort. 115:101-110. https://doi.org/10.1016/j.scienta.2007.08.008