References
- Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
- Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Deng, A., J. Wu, Y. Zhang, G. Zhang, and T. Wen. 2010. Purification and characterization of a surfactantstable high-alkaline protease from Bacillus sp. B001. Bioresource Technol. 101: 7100-7106. https://doi.org/10.1016/j.biortech.2010.03.130
- Gessesse, A. 1997. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
- Horikoshii, K. 1999. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
-
Hmidet, N., N. E. Ali, A. Haddar, S. Kanoun, S. K. Alya, and M. Nasri. 2009. Alkaline proteases and thermostable
$\alpha$ -amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem. Engineer. J. 47: 71-79. https://doi.org/10.1016/j.bej.2009.07.005 - Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada, 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles. 2: 185-190. https://doi.org/10.1007/s007920050059
- Jacobs, M. F. 1995. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 152: 67-74.
- Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie. 90: 1291-1305. https://doi.org/10.1016/j.biochi.2008.03.004
- Jeong, S. J., G. H. Kwon, J. Y. Chun, J. S. Kim, C. S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of Fibrinolytic Enzyme Gene from Bacillus subtilis Isolated from Cheonggukjang and Its Expression in Protease-deficient Bacillus subtilis Strains. J. Microbiol. Biotechnol. 17: 1018-1023.
- Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159. https://doi.org/10.1016/S0032-9592(02)00061-4
- Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. 95: 267-272. https://doi.org/10.1046/j.1365-2672.2003.01982.x
- Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447. https://doi.org/10.1016/S0032-9592(03)00260-7
- Joo, H. S. and C. S. Chang. 2005a. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40: 1263-1270. https://doi.org/10.1016/j.procbio.2004.05.010
- Joo, H. S. and C. S. Chang. 2005b. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J. Appl. Microbiol. 98: 491-497. https://doi.org/10.1111/j.1365-2672.2004.02464.x
- Kazan, D., A. A. Denizci, M. N. K. Oner, and A. Erarslan. 2005. Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42. J. Ind. Microbiol. Biotechnol. 32: 335-344. https://doi.org/10.1007/s10295-005-0260-z
- Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
- Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999. Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochem. 34: 441-449. https://doi.org/10.1016/S0032-9592(98)00110-1
- Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessières, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, and A. Danchin. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 390: 237-238.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 22: 680-685.
- Lee, A. R., G. M. Kim, G. H. Kwon, K. W. Lee, J. Y. Park, J. Y. Chun, J. H. Cha, Y. S. Song, and J. H. Kim. 2010. Cloning of aprE86-1 Gene Encoding a 27-kDa Mature Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH86-1. J. Microbiol. Biotechnol. 20: 370-374.
- Manachini, P. L. and M. G. Fortina. 1998. Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568. https://doi.org/10.1023/A:1005349728182
- Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334. https://doi.org/10.1016/j.copbio.2004.06.005
-
Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a
$\sigma^A$ ($\sigma^{43}$ ) promoter in vitro and in vivo. J. Bacteriol. 171: 2657-2665. - Phadatare, S. U., V. V. Deshpande, and M. C. Srinvasan. 1993. High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enz. Microb. Technol. 15: 72-76. https://doi.org/10.1016/0141-0229(93)90119-M
- Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
- Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 44: 262-268. https://doi.org/10.1016/j.procbio.2008.10.022
- Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007. Detergent Alkaline Proteases: Enzymatic Properties, Genes, and Crystal Structures. J. Biosci. Bioeng. 103: 501-508. https://doi.org/10.1263/jbb.103.501
- Samal, B. B., B. Karan, and Y. Stabinsky. 1990. Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. Bioeng. 28: 609-612.
- Sousa, F., S. Jus, A. Erbel, V. Kokol, A. Cavaco-Paulo, and G. M. Gubitz. 2007. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enz. Microb. Technol. 40: 1772-1781. https://doi.org/10.1016/j.enzmictec.2006.12.017
- Tunlid, A., S. Rosen, B. Ek, and L. Rask. 1994. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiol. 140: 1687-1695. https://doi.org/10.1099/13500872-140-7-1687
- Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L. Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406-413. https://doi.org/10.1016/S0141-0229(99)00164-7