Cloning and Expression of a Alkaline Protease from Bacillus clausii I-52

Bacillus clausii I-52로부터 alkaline protease 유전자의 클로닝 및 발현

  • 주한승 (씨앤제이바이오텍(주)) ;
  • 최장원 (대구대학교 바이오산업학과)
  • Received : 2011.11.07
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

The alkaline protease gene was cloned from a halo-tolerant alkalophilic Bacillus clausii I-52 isolated from the heavily polluted tidal mud flat of West Sea in Inchon Korea, which produced a strong extracellular alkaline protease (BCAP). Based on the full genome sequence of Bacillus subtilis, PCR primers were designed to allow for the amplification and cloning of the intact pro-BCAP gene including promoter region. The full-length gene consists of 1,143 bp and encodes 381 amino acids, which includes 29 residues of a putative signal peptide and an additional 77-amino-acid propeptide at its N-terminus. The mature BCAP deduced from the nucleotide sequence consists of 275 amino acids with a N-terminal amino acid of Ala, and a relative molecular weight and pI value was 27698.7 Da and 6.3, respectively. The amino acid sequence shares the highest similarity (99%) to the nattokinase precursor from B. subtilis and subtilisin E precursor from B. subtilis BSn5. The substrate specificity indicated that the recombinant BCAP could hydrolyze efficiently the synthetic substrate, N-Suc-Ala-Ala-Pro-Phe-pNA,and did not hydrolyze the substrates with basic amino acids at the P1 site. The recombinant BCAP was strongly inhibited by typical serine protease inhibitor, PMSF, indicating that BCAP is a member of the serine proteases.

인천 연안의 심하게 오염된 갯벌로부터 강력한 세포외 알카리성 단백질 분해효소를 생산하는 호알카리성 Bacillus clausii I-52를 분리하였으며, 이 균주로부터 알카리성 단백질 분해효소의 유전자를 cloning하여 서열 분석을 하였다. Chromosome 서열이 완전히 밝혀진 Bacillus subtilis의 서열을 기초로 하여 알카리성 단백질 분해효소 및 promoter를 포함하도록 primer를 고안하여 PCR을 수행하여 2,277 bp의 DNA 단편을 얻었으며 BLAST 분석 결과 29 개의 아미노산으로 이루어진 signal peptide, 77 개의 아미노산으로 이루어진 propeptide 및 275 개의 아미노산을 갖는 활성형의 BCAP으로 구성된 총 381 개의 아미노산을 코딩하는 1,143 bp의 open reading frame을 확인하였다. 활성형 BCAP의 N-말단 아미노산은 Ala이며, 분자량 및 pI 값은 각각 27698.7 Da과 6.30으로 계산되었다. 아미노산 상동성을 분석한 결과, B. subtilis 유래의 nattokinase precursor 및 B. subtilis BSn5 유래의 subtilisin E precursor와 99%의 서열 상동성을 나타내어 B. clausii I-52 유래의 BCAP은 subtilisin 계열의 단백질 분해효소임을 확인하였다. E. coli BL21(DE3)에서 발현한 재조합 BCAP는 N-Suc-Ala-Ala-Pro-Phe-pNA 를 효율적으로 분해하였다. Refolding한 재조합 BCAP은 전형적인 serine protease inhibitor인 PMSF에 의하여 강하게 효소 활성이 억제됨으로써 serine protease 계열의 단백질 분해효소임을 알 수 있었다.

Keywords

References

  1. Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni. 1999. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Deng, A., J. Wu, Y. Zhang, G. Zhang, and T. Wen. 2010. Purification and characterization of a surfactantstable high-alkaline protease from Bacillus sp. B001. Bioresource Technol. 101: 7100-7106. https://doi.org/10.1016/j.biortech.2010.03.130
  4. Gessesse, A. 1997. The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
  5. Horikoshii, K. 1999. Alkalophiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750.
  6. Hmidet, N., N. E. Ali, A. Haddar, S. Kanoun, S. K. Alya, and M. Nasri. 2009. Alkaline proteases and thermostable $\alpha$-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem. Engineer. J. 47: 71-79. https://doi.org/10.1016/j.bej.2009.07.005
  7. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada, 1998. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles. 2: 185-190. https://doi.org/10.1007/s007920050059
  8. Jacobs, M. F. 1995. Expression of the subtilisin Carlsberg-encoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 152: 67-74.
  9. Jaouadi, B., S. Ellouz-Chaabouni, M. Rhimi, and S. Bejar. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie. 90: 1291-1305. https://doi.org/10.1016/j.biochi.2008.03.004
  10. Jeong, S. J., G. H. Kwon, J. Y. Chun, J. S. Kim, C. S. Park, D. Y. Kwon, and J. H. Kim. 2007. Cloning of Fibrinolytic Enzyme Gene from Bacillus subtilis Isolated from Cheonggukjang and Its Expression in Protease-deficient Bacillus subtilis Strains. J. Microbiol. Biotechnol. 17: 1018-1023.
  11. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159. https://doi.org/10.1016/S0032-9592(02)00061-4
  12. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2003. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. J. Appl. Microbiol. 95: 267-272. https://doi.org/10.1046/j.1365-2672.2003.01982.x
  13. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang. 2004. Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447. https://doi.org/10.1016/S0032-9592(03)00260-7
  14. Joo, H. S. and C. S. Chang. 2005a. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40: 1263-1270. https://doi.org/10.1016/j.procbio.2004.05.010
  15. Joo, H. S. and C. S. Chang. 2005b. Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J. Appl. Microbiol. 98: 491-497. https://doi.org/10.1111/j.1365-2672.2004.02464.x
  16. Kazan, D., A. A. Denizci, M. N. K. Oner, and A. Erarslan. 2005. Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42. J. Ind. Microbiol. Biotechnol. 32: 335-344. https://doi.org/10.1007/s10295-005-0260-z
  17. Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  18. Kumar, C. G., M. P. Tiwari, and K. D. Jany. 1999. Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochem. 34: 441-449. https://doi.org/10.1016/S0032-9592(98)00110-1
  19. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessières, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, and A. Danchin. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 390: 237-238.
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 22: 680-685.
  21. Lee, A. R., G. M. Kim, G. H. Kwon, K. W. Lee, J. Y. Park, J. Y. Chun, J. H. Cha, Y. S. Song, and J. H. Kim. 2010. Cloning of aprE86-1 Gene Encoding a 27-kDa Mature Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH86-1. J. Microbiol. Biotechnol. 20: 370-374.
  22. Manachini, P. L. and M. G. Fortina. 1998. Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568. https://doi.org/10.1023/A:1005349728182
  23. Maurer, K. H. 2004. Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334. https://doi.org/10.1016/j.copbio.2004.06.005
  24. Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a $\sigma^A$ ($\sigma^{43}$) promoter in vitro and in vivo. J. Bacteriol. 171: 2657-2665.
  25. Phadatare, S. U., V. V. Deshpande, and M. C. Srinvasan. 1993. High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enz. Microb. Technol. 15: 72-76. https://doi.org/10.1016/0141-0229(93)90119-M
  26. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
  27. Rao, C. S., T. Sathish, P. Ravichandra, and R. S. Prakasham. 2009. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 44: 262-268. https://doi.org/10.1016/j.procbio.2008.10.022
  28. Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito. 2007. Detergent Alkaline Proteases: Enzymatic Properties, Genes, and Crystal Structures. J. Biosci. Bioeng. 103: 501-508. https://doi.org/10.1263/jbb.103.501
  29. Samal, B. B., B. Karan, and Y. Stabinsky. 1990. Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. Bioeng. 28: 609-612.
  30. Sousa, F., S. Jus, A. Erbel, V. Kokol, A. Cavaco-Paulo, and G. M. Gubitz. 2007. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enz. Microb. Technol. 40: 1772-1781. https://doi.org/10.1016/j.enzmictec.2006.12.017
  31. Tunlid, A., S. Rosen, B. Ek, and L. Rask. 1994. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiol. 140: 1687-1695. https://doi.org/10.1099/13500872-140-7-1687
  32. Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L. Wang. 2000. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406-413. https://doi.org/10.1016/S0141-0229(99)00164-7