Use of Agrobacterium for the Genetic Transformation of Trichoderma harzianum

Trichoderma harzianum의 형질전환을 위한 Agrobacterium의 이용

  • Park, Hee-Sung (Department of Biotechnology, Catholic University of Daegu) ;
  • Shin, Dong-Il (Department of Biotechnology, Catholic University of Daegu)
  • 박희성 (대구가톨릭대학교 생명공학과) ;
  • 신동일 (대구가톨릭대학교 생명공학과)
  • Received : 2011.08.31
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

Effective Agrobacterium-mediated transformation of Trichoderma harzianum could be achieved using the $Al_2O_3$ particles-abraded mycelia pellets. Transformation efficiency, as percents for the number of hygromcin-resistant mycelia pellets out of total pellets tested, was about 20 in average for $Al_2O_3$ experiment. No transformed mycelium was obtained from the intact mycelia pellets. After second round of antibiotics selection, DNA integration of hygromycin resistant gene and the expression of target gene could be confirmed by PCR and RT PCR, respectively. This is the first report of Agrobacterium-mediated T. harzianum transformation.

Trichoderma harzianum 균사체를 $Al_2O_3$ 입자와 마찰시킴으로써 Agrobacterium을 이용한 형질전환에 효과적으로 이용할 수 있었다. Hygromycin 저항성 균사체 출현을 비교한 결과 형질전환 효율이 20% 정도로 나타났으며 대조군의 경우 형질전환균사체의 출현은 없었다. 2차례의 연속적인 항생제배지에서 선발을 거친 형질전환균사체들은 PCR에 의하여 안정적 DNA도입이 확인되었으며 RT-PCR에 의하여 target gene의 mRNA발현을 확인할 수 있었다. 현재까지 Agrobacterium을 이용한 T. harzianum 형질 전환은 보고된 바 없다.

Keywords

Acknowledgement

Supported by : 대구가톨릭대학교

References

  1. Bechtold, N. and G. Pelletier. 1998. In planta Agrobacterium-mediated gene transfer of adult Arabidopsis thaliana plants by vacuum infiltration. Meth. Mol. Biol. 82: 259-266.
  2. Bouws, H., A. Wattenberg, and H. Zorn. 2008. Fungal secretomes - nature''s toolbox for white biotechnology. Appl. Microbiol. Biotechnol. 80: 381-388. https://doi.org/10.1007/s00253-008-1572-5
  3. Cheng, M., J. E. Fry, S. Pang, I. Zhou, C. Hironaka, D. R. I. Duncan, T. W. L. Conner, and Y. Wang. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens, Plant Physiol. 115: 971-980.
  4. Cheng, M., T. Hu, J. L. Layton, C. N. Liu, and J. E. Fry. 2003. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol. Plant 39: 595-6041. https://doi.org/10.1079/IVP2003471
  5. Chow, T. Y.-K. and E. Kafer. 1993. A rapid isolation of total nucleic acids from Aspergillus nidulans. Fungal Genet. Newslett. 40: 25-27.
  6. Deane, E. E., J. M. Whipps, J. M. Lynch, and J. F. Peberdy. 1999. Transformation of Trichoderma reesei with a constitutively expressed heterologous fungal chitinase gene. Enz. Microbial Technol. 24: 419-424. https://doi.org/10.1016/S0141-0229(98)00155-0
  7. Delgado-Jarana, J., J. A. Pintor-Toro, and T. Benitez. 2000. Overproduction of $\beta$-1,6-glucanase in Trichoderma harzianum is controlled by extracellular acidic proteases and pH. Biochim. Biophy. Acta 1481: 289-296. https://doi.org/10.1016/S0167-4838(00)00172-2
  8. Enriquez-Obregon, G. A., R. I. Vazquez-Padron, D. L. Prieto-Samsonov, G. A. de la Riva, and G. Selman-Housein. 1998. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacteriummediated transformation. Planta 205: 20-27.
  9. Flores Solís, J. L., P. Mlejnek, K. Studena, and S. Prochazka. 2003. Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum. L. Plant Soil Environ. 49: 255-260.
  10. Hoyos-Carvajal, L., S. Orduz, and J. Bissett. 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Cont. 51: 409-416. https://doi.org/10.1016/j.biocontrol.2009.07.018
  11. John, R. P., R. D. Tyagi, D. Prevost, S. K. Brar, S. Pouleur, and R. Y. Surampalli. 2010. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protect. 29: 1452-1459. https://doi.org/10.1016/j.cropro.2010.08.004
  12. Kilaru, S. and U. Kues 2005. Comparison of gpd genes and their protein products in basidiomycetes. Fungal Genet. Newslett. 52: 18-23.
  13. Kim, S. D. I. Shin, and H. S. Park. 2007. Transient $\beta$-glucuronidase expression in lily (Lilium longiflorum L.) pollen via wounding-assisted Agrobacteriummediated transformation. Biotech. Lett. 29: 965-969. https://doi.org/10.1007/s10529-007-9326-5
  14. Liu, P. and Q. Yang. 2005. Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach Res. Microbiol. 156: 416-423.
  15. Manczinger, L., O. Komonyi, Z. Antal, and L. Ferenczy. 1997. A method for high-frequency transformation of Trichoderma viride. J. Microbiol. Meth. 29: 207-210. https://doi.org/10.1016/S0167-7012(97)00026-2
  16. Olhoft, P. M. and D. A. Somers. 2001. L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20: 706-711. https://doi.org/10.1007/s002990100379
  17. Pan, S. Q. T. Charles, S. Jin, Z. L. Wu, and E. W. Nester. 1993. Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction Proc. Natl. Acad. Sci. USA 90: 9939-9943. https://doi.org/10.1073/pnas.90.21.9939
  18. Sharma, K. K. and R. C. Kuhad. 2010. Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnol. 10: 67-74. https://doi.org/10.1186/1472-6750-10-67
  19. Shin, D. I. and H. S. Park. 2008. Expression of recombinant protein from Oenanthe javanic DC. leaf tissues as a biofactory. Kor. J. Biotechnol. Bioeng. 23: 554-556.
  20. Singh, N. and H. S. Chawla. 1999. Use of silicon carbide fibers for Agrobacterium-mediated transformation in wheat. Curr. Sci. 76: 1483-1485.
  21. Te'o, V. S. J., P. L. Bergquist, and K. M. H. Nevalainen. 2002. Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. J. Microbiol. Meth. 51: 393-399. https://doi.org/10.1016/S0167-7012(02)00126-4
  22. Ulhoa, C. J., M. H. Vainstein, and J. E. Peberdy. 1992. Transformation of Trichoderma species with dominant selectable markers. Curr. Genet. 21: 23-26. https://doi.org/10.1007/BF00318649
  23. Uze, M., J. Wunn, J. Pounti-Kaelas, I. Potrykus, and C. Sauter. 1997. Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.) Plant Sci. 130: 87-95. https://doi.org/10.1016/S0168-9452(97)00211-2
  24. Wang, B. and L. Xia. 2011. High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresource Technol. doi: 10.1016/j.biortech.2010.12.099.