Spreading Pattern of Evergreen Broad-leaved Trees in Forest Community adjacent to the Camellia japonica Stands

동백나무림 주변 산림군집에서 상록활엽수의 확산패턴

  • Chung, Jae-Min (Dept. of Plant Conservation, Korea National Arboretum) ;
  • Jung, Hyu-Ran (Dept. of Plant Conservation, Korea National Arboretum) ;
  • Moon, Hyun-Shik (Dept. of For. Environ. Res., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • 정재민 (국립수목원 산림자원보존과) ;
  • 정혜란 (국립수목원 산림자원보존과) ;
  • 문현식 (경상대학교 산림환경자원학(농업생명과학연구원))
  • Received : 2011.11.29
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

In this study, the amount of seedlings and seed dispersal of evergreen broad-leaved trees in forest community adjacent to Camellia japonica forest were studied to provide basic information for effective management of evergreen broad-leaved forest. Evergreen broad-leaved trees including C. japonica, Neolitsea sericea, Machilus thunbergii, Ligustrum japonicum, Cinnamomum japonicum, Litsea japonica, Pittosporum tobira showed high density and ratio of seedlings in community adjacent to C. japonica forest. Although individual densities of N. sericea, M. thunbergii, L. japonicum were low, their seedlings were distributed up to Pinus thunbergii and coniferous broad-leaved forest at a distance of 100m and 200m from C. japonica forest. Distribution of DBH class of C. japonica suggested a continuous spread from higher frequency of young individuals, N. sericea, M. thunbergii and L. japonicum did not showed an obvious trend. Seed of C. japonica mainly dispersed within 50m from mother tree.

본 연구는 상록활엽수림의 합리적인 관리를 위한 기초정보를 제공하기 위하여 동백나무림 주변 산림군집에 대한 상록활엽수종의 치수발생량과 종자산포량을 분석하였다. 치수밀도와 비율의 경우, 동백나무림과 동백나무림 가장자리, 동백나무림내 해송아래, 편백림에서 발생하는 전체치수의 약 90%이상이 동백나무를 포함한 참식나무와 후박나무, 광나무, 생달나무, 까마귀쪽나무, 돈나무 등의 상록활엽수류가 차지하고 있었으며, 특히 참식나무, 후박나무, 광나무는 동백나무림에서 200 m 정도 떨어진 해송림과 낙엽활엽수림에까지 밀도는 낮지만 치수발생이 이루어지고 있어 상록활엽수림으로 천이가 시작되고 있었다. 흉고 직경급 분포에서 동백나무는 역J자형의 분포를 나타내고 있었고 후박나무, 참식나무, 광나무는 뚜렷한 경향을 나타내지 않았다. 동백나무 종자는 동백나무림 주변 50 m 이내에 주로 산포되고 있는 것으로 조사되었다.

Keywords

References

  1. Chung, J. M., H. R. Jung, J. T. Kang, and H. S. Moon. 2010. Vegetation structure and soil characteristics around Camellia japonica stand in Hakdong, Geoje island. J. Agric. Life Sci. 44: 31-40.
  2. Chung, J. M., H. R. Jung, J. T. Kang, M. G. Cho, C. H. Kim, and H. S. Moon. 2010. Ecological characteristics of forest community by distance from Camellia japonica stand. J. Agric. Life Sci. 44: 27-37.
  3. Harcombe, P. A. and P. H. Marks. 1978. Tree diameter distribution and replacement precesses in southern Texas forests. For. Sci. 24: 153-166.
  4. Herrera, J. M. and D. Garcia. 2009. Effects of forest fragmentation on seed dispersal and seedling establishment in Ornithochorous trees. Cons. Biol. 24: 1089-1098.
  5. Lee, J. H. and B. H. Choi. 2010. Distribution and northernmost limit on the Korean peninsula of three evergreen trees. Korean J. Pl. Taxon. 40: 267-273.
  6. Nathan, R. and H. C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecol. Evol. 15: 278-285. https://doi.org/10.1016/S0169-5347(00)01874-7
  7. Noma, N. and T. Yumoto. 1997. Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol. Res. 12: 119-129. https://doi.org/10.1007/BF02523777
  8. Oh, K. K., Y. S. Kim, J. G. Oh, and Y. B. Ki. 2008. Dynamics of forest community structure at the valley of Piagol and Daeseonggol in the Jirisan national park(I). Kor. J. Env. Eco. 22: 514-520.
  9. Oh, K. K. and H. Y. Shim. 2006. Distribution and population structure of evergreen broad-leaved forest in the Weolchulsan national park. Kor. J. Env. Eco. 20: 81-93.
  10. Ohashi, H., Y. Sasaki, and K. Ohashi. 2006a. The northernmost limit of distribution of Quercus acuta Thunb. (Fagaceae). J. Jpn. Bot. 81: 173-187.
  11. Ohashi, H., Y. Sasaki, and K. Ohashi. 2006b. The northernmost limit of distribution of Neolitsea sericea (Blume) Koidz. (Lauraceae) on the pacific side of Japan. J. Jpn. Bot. 81: 248-249.
  12. Ohwi, J. and M. Kitagawa. 1983. New flora of Japan. Shibundo Co., Ltd. Publishers. Tokyo. 1716p.
  13. Paggi, G. M., J. A. T. Sampaio, M. Bruxel, C. M. Zanella, M. Goetze, M. V. Buttow, C. Palma-Silva, and F. Bered. 2010. Seed dispersal and population structure in Vriesea gigantea, a bromeliad from the Brazilian atlantic rainforest. Bot. J. Linn. Soc. 164: 317-325. https://doi.org/10.1111/j.1095-8339.2010.01088.x
  14. Song, H. K., M. J. Lee, S. Lee, H. J. Kim, Y. U. Ji, and O. W. Kwon. 2003. Vegetation structures and ecological niche of Quercus mongolica forests. Jour. Korean For. Soc. 92: 409-420.
  15. Tackenberg, O., P. Poschlod, and S. Bonn. 2003. Assessment of wind dispersal potential in plant species. Ecol. Monogra. 73: 191-205. https://doi.org/10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2
  16. Thomson, F. J., A. T. Molea, T. D. Auld, and R. T. Kingsford. 2011. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99: 1299-1307. https://doi.org/10.1111/j.1365-2745.2011.01867.x
  17. Thompson, K. and D. Rabinowitz. 1989. Do big plants have big seeds? Am. Nat. 133: 722-728. https://doi.org/10.1086/284947
  18. Travis, J. M. J., H. S. Smith, and S. M. W. Ranwala. 2010. Towards a mechanistic understanding of dispersal evolution in plants. conservation implications. Divers. Distrib. 16: 690-702. https://doi.org/10.1111/j.1472-4642.2010.00674.x
  19. Venable, D. L. and J. S. Brown. 1988. The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments. The Am. Natural. 131: 360-384. https://doi.org/10.1086/284795
  20. Wang, B. C. and T. B. Smith. 2002. Closing the seed dispersal loop. Trends in Ecol. Evol. 17: 379-385. https://doi.org/10.1016/S0169-5347(02)02541-7
  21. Wilson, M. F., B. Rice, and M. Westoby. 1990. Seed dispersal spectra: comparison of temperate plant communities. J. Vegetation Sci. 1: 547-562. https://doi.org/10.2307/3235789
  22. Yun, J. H., J. H. Kim, K. H. Oh, and B. Y. Lee. 2011. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Kor. J. Env. Eco. 25: 47-56.
  23. Zotz, G., P. Permejo, and H. Dietz. 1999. The epiphyte vegetation of Annona glabra on Barro Colorado island, Panama. J. Biogeo. 24: 761-776.