Clonal Variation of Physical Characteristics and Mineral Composition in Acorn of Quercus acutissima and Q. serrata Seed Orchard

  • Kim, Chang-Soo (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sang-Urk (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Shim, Tae-Heum (Gangwon-do Institute of Health and Environment)
  • Received : 2011.10.28
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

This study investigated mineral element concentrations of acorns in Quercus acutissima and Quercus serrata seed orchard, so that to estimate the variation of these species based on the chemical composition in different clones from plus trees. The acorns were collected from ten clones of each species grown in the same clonal seed orchard. The nutritional concentration of acorns was significantly different between the clones and species. The concentration of nutrient for the whole acorn followed in this general sequence: P > K > Na > Mg > Ca > Mn > Fe > Zn > Cu. The mineral concentrations of acorns in clones of Q. acutissima and Q. serrata contained P (494 to 684 and 541 to 672 mg/100 g), K (114 to 569 and 140 to 251 mg/100 g), Na (57 to 121 and 49 to 85 mg/100 g), Mg (29 to 37 and 26 to 42 mg/100 g), Ca (10 to 53 and 26 to 68 mg/100 g), Mn (0.5 to 3.4 and 1.8 to 4.5 mg/100 g), Fe (0.7 to 1.1 and 0.0 to 2.2 mg/100 g), Zn (0.34 to 0.81 and 0.38 to 0.84 mg/100 g), and Cu (0.13 to 0.40 and 0.09 to 0.34 mg/100 g) respectively. Even though acorns of Q. serrata are smaller in size than Q. acutissima, acorns of Q. serrata contained significantly higher concentration of phosphorus, calcium, iron and manganese than Q. acutissima. Based on the mineral composition of the acorns, this study has shown that the clones of Q. acutissima and Q. serrata have different ability to accumulate mineral nutrients which could indicate the variation of Quercus species in terms of mineral acquisition and accumulation.

Keywords

References

  1. Bainbridge, D. A. 1986. Use of Acorns for Food in California: Past, Present, Future. Presented at the Symposium on Multiple-use Management of California's Hardwoods, November 12-14.
  2. Bonner, F. T. and J. A. Vozzo. 1987. Seed biology and technology of Quercus. General Technical Report SO-66, New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, p 21.
  3. Cho, D. R. 1998. An analysis of demand and supply for acorn in Korea. Agricultural policy research 25: 71-84.
  4. Clark, R. B. 1983. Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant and Soil 72: 175-196. https://doi.org/10.1007/BF02181957
  5. Duncan, D. A. and W. J. Clawson. 1980. Livestock utilization of California's oak woodlands. In: feedstuffs. Acta Agraria Kaposvariensis 3: 59-69.
  6. Ferrari, C. K. B. and E. A. F. S. Torres. 2003. Biochemical pharmacology of functional foods and prevention of chronic diseases of aging. Biomed. Pharmacother 57: 251-260. https://doi.org/10.1016/S0753-3322(03)00032-5
  7. Ferreira-Dias, S., D. G. Valente, and J. M. F. Abreu. 2003. Pattern recognition of acorns from different Quercus species base on oil content and fatty acid profile. Grasasy Aceites 54: 384-391.
  8. Grushak, M. A. and D. Dellapenna. 1999. Improving the nutrient composition of plants to enhance human nutrition and health. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 133-161 https://doi.org/10.1146/annurev.arplant.50.1.133
  9. Gutteridge J. M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41: 1819-1828.
  10. Kabata-Pendias, A. and H. Pendias. 1986. Trace elements in Soil and Plants. CRC Press, Inc. BocaRaton, Florida.
  11. Leung, F. Y. 1998 Trace elements that act as antioxidants as parenteral micronutrition. J. Nutr. Biochem. 9: 304-307. https://doi.org/10.1016/S0955-2863(98)00018-7
  12. Murphy, J. and J. P. Riley. 1962. A modified single solutions method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.
  13. Nikolic. N., S. Orlovic, B. Krstic and Z. Kevresan. 2006. Variability of acorn nutrient concentrations in pedunculate oak (Quercus robur L.) genotypes. J. For. Sci. 52: 51-60.
  14. Osteras, A. H., L. Ekvall, and M. Greger. 2000. Sensitivity to and accumulation of cadmium in Betula pendula, Picea abies and Pinus sylvestris seedlings from different regions in Sweden. Can. J. Bot. 78: 1440-1449.
  15. Ozcan, T. and G. Baycu. 2005. Some elemental concentrations in the acorns of Turkish Quercus L. (Fagaceae) taxa. Pak. J. Bot. 37: 361-371.
  16. Rababah, T. M., K. I. Ereifej, M. A. Al-Mahasneh, M. N. Alhamad, M. A. Alrababah, and A. H. Muhammad. 2008. The physicochemical composition of acorns for two mediterranean Quercus species. Jordan J. Agri. Sci. 4: 131-137.
  17. Rakic, S., D. Povrenovic, V. Tesevic, M. Simic and R. Maletic. 2006. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng. 74: 416-423. https://doi.org/10.1016/j.jfoodeng.2005.03.057
  18. Saffarzadeh, A., L. Vincze, and J. Csapo. 1999. Determination of the chemical composition of acorn (Quercus brantii), Pistacia atlantica and Pistacia khinjuk seeds as non-conventional feedstuffs. Acta Agraria Kaposvariensis 3: 59-69.
  19. Saric, M. and B. C. Loughman. 1983. Genetic aspects of plant nutrition. The Hague, Boston, Lancaster, Martines Nijhoff Publishers p.495.
  20. Savicevic, M., S. Dord-evic, M. Gec, R. Kocijancic, M. Milosevic and V. Milosevic. 1983. Hygiene. 3rd edn. Medical Book, Belgrade.
  21. Schleppi, P., L. Tobler, J. B. Bucher and B. Wyttenbach. 2000. Multivariate interpretation of the foliar chemical composition of Norway spruce (Picea abies). Plant Soil 219: 251-262. https://doi.org/10.1023/A:1004731517997
  22. Tyler, G. and A. Zohlen. 1998. Plant seeds as mineral nutrient resource for seedlings - a comparison of plants from calcareous and silicate soils. Ann. Bot. 81: 455-459. https://doi.org/10.1006/anbo.1997.0581
  23. Vogel, W. G. 1990. Results of planting oaks on coal surface-mined lands. In: Proceedings, 4th work shop on seedling physiology and growth problems in oak plantings. Eds.: VanSambeek JW, Larson MM (1989) March 1-2; Columbus, OH. (Abstracts).
  24. Woo, S. J. and S. S. Ryoo. 1983. Preparation method for atomic absorption spectrophotometry of food samples: Comparison of dry, wet and aqua-regia method. Korean J. Food Sci. Technol. 15: 225-230.
  25. Zitnik S., E. Hanked, and H. Kraigher. 1999. Reduced germination is associated with loss of phytic acid in stored seeds of sessile oak (Quercus petraea (Matt.) Liebl.). Phyton (Horn) 39: 275-280.