Pesticide Multiresidues Analysis of Environmental-friendly Agricultural Soils by the Complex Cleanup Method of Accelerated Solvent Extraction (ASE) and Solid Phase Extraction (SPE)

ASE 및 SPE 복합정제법을 이용한 친환경농업토양의 다성분잔류농약 분석

  • Moo, Kyung-Mi (National Agricultural Products Quality Management Service Gyungnam provincial Office) ;
  • Park, Jin-Woo (Incheon Public Procurement Service) ;
  • Lee, Young-Guen (Department of Food Science and Technology, Pusan National University) ;
  • Choi, Young-Whan (Horticultural Bioscience, College of Natural Resources and Life Science, Pusan National University)
  • 문경미 (국립농산물품질관리원 경남지원) ;
  • 박진우 (인천지방조달청) ;
  • 이영근 (부산대학교 식품공학과) ;
  • 최영환 (부산대학교 원예생명과학과)
  • Received : 2011.02.17
  • Accepted : 2011.10.28
  • Published : 2011.10.31

Abstract

Fifty substances of pesticide were selected for analysis through the historical investigation of pesticides detected from environmental-friendly agricultural soil, and the environmental-friendly agricultural soils in Gyeongnam area were collected and then were accepted Anve (accelerated solvent extraction) and SPve (solid-phase extraction) as multiresidue extraction and clean up methods suitable to the soils. The pesticide residues were analyzed by using GC/vCD/NPD, HPLC/UV/FL, GC/MSD, or HPLC/MSD. 50 kinds of pesticides for the soils were an average of 95.5% from retrieval ratio of the 72 to 118% range, and the average of 3.0% for CV (%). Among 40 samples of soil, 20 components were detected from pesticide residues of 21 samples, and average amounts detected for these components were 0.035 for endosulfan, 0.043 for ethoprophos, 0.020 for chlorpyrifos, 0.023 for chlorfenapyr, 0.047 for flufenoxuron, 0.070 for fenvalerate, 0.266 for cypermethrin, 0.016 for lufenuron, 0.022 for bifenthrin, 0.025 for fenobucarb/BPMC, 0.043 for difenoconazole, 0.059 for fenarimol, 0.020 for kresoxim-methyl, 0.026 for tetraconazole, 0.039 for isoprothiolane, 0.017 for iprobenfos, 0.014 for nolrimol, 0.156 for fluquinconazole, 0.047 for tebuconazole, and 0.045 mg/kg for oxadiazon. Therefore it is infered that the establishment of pesticide residues limit for environmental-friendly agricultural soil is needed as soon as possible.

국내의 친환경농산물과 토양에서 자주 검출되는 농약 50성분을 선정하고, 경남지역의 친환경농산물 재배농지의 토양시료 40점을 대상으로, 가속용매추출법(accelerated solvent extraction)과 고상추출법(solid-phase extraction)의 복합처리법으로 정제하고 GC/ECD/NPD, HPLC/UV/FL, GC/MSD 및 HPLC/MSD를 이용한 분석법을 적용하여 잔류농약의 잔류실태를 조사하였다. 적용한 분석법에 의한 농약 회수율은 72~118%의 범위로 평균 95.5%이었고, CV(%)값 평균은 3.0%로 나타났다. 토양 40점 중 잔류농약 검출은 21점에서 20성분이 검출되었으며 검출토양의 농약별평균 검출량은 endosulfan 0.035, ethoprophos 0.043, chlorpyrifos 0.020, chlorfenapyr 0.023, flufenoxuron 0.047, fenvalerate 0.070, cypermethrin 0.266, lufenuron 0.016, bifenthrin 0.022, fenobucarb/BPMC 0.025, difenoconazole 0.043, fenarimol 0.059, kresoxim-methyl 0.020, tetraconazole 0.026, isoprothiolane 0.039, iprobenfos 0.017, nuarimol 0.014, fluquinconazole 0.156, tebuconazole 0.047 및 oxadiazon이 0.045 mg/kg으로 나타나서 친환경재배농지의 토양환경기준에 잔류농약의 설정이 시급하다고 판단되었다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. An, X. H., W. H. An, I. B. Im, S. B. Lee, and J. G. Kang. 2006. Persistence of fungicide pencycuron in soils. The Korean J. Pesticide Sci. 10: 296-305.
  2. ASE 200. 1995. Accelerated Solvent Extractor Operator's Manual, Document No. 031149, Revision 01, Dionex, Sunnyvale, CA, Sect. 3-5.
  3. Chen, S., X. Yu, X. He, D. Xie, Y. Fan, and J. Peng. 2009. Simplified pesticide multiresidues analysis in fish by low-temperature cleanup and solid-phase extraction coupled with gas chromatography/mass spectrometry. Food Chem. 113: 1297-1300. https://doi.org/10.1016/j.foodchem.2008.08.045
  4. DeLorenzo, M. E., L. A. Taylor, S. A. Lund, P. L. pennington, E. D. Strozier, and M. H. Fulton. 2002. Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch. Environ. Contam. Toxicol. 42: 173-181. https://doi.org/10.1007/s00244-001-0008-3
  5. FAO, 2000. Joint FAO/WHO food standards programme. Codex Alimentarius commission, pesticide residues in food-methods of analysis and sampling, 2A: 39-47.
  6. FDA, 1994. Pesticide analytical manual. Vol. I. Multiresidue Methods. 3rd ed., FDA, Washington DC.
  7. FDA, 1994. Pesticide analytical manual. Vol. I. Section 103: Method Application In Regulatory Analysis. 3rd ed., FDA, Washington DC.
  8. Hyun, H. N., G. M. Jang, S. S. Oh, and J. B. Chung. 2007. Evaluation of groundwater contamination potential of pesticides using groundwater ubiquity score in Jeju island soils. Korean J. Pesticide Sci. 11:144-153.
  9. Jeong, J. Y. 2006. Necessity of practicing the environment-friendly organic agriculture. Food Sci. & Industry. 39: 4-8.
  10. Karazafiris, E., U. Menkissoglu-Spiroudi, and A. Thrasyvoulou. 2008. New multiresidue method using solid-phase extraction and gas chromatography-microelectron- capture detection for pesticide residues analysis in royal jelly. J. Chrom. A. 1209: 17-21. https://doi.org/10.1016/j.chroma.2008.09.018
  11. Kaur, I., R. P. Mathur, S. N. Tandon, and P. Dureja. 1998. Persistence of endosulfan (technical) in water and soil. Environ. Pollut. 79: 77-83.
  12. Ken, G. D. 1992. Foliar and nontarget deposition from conventional and reduce volume-Pesticide application in greenhouses. J. Agri. Food Chem., 40: 2510-2516. https://doi.org/10.1021/jf00024a034
  13. Kim, I. S. and I. S. Kim. 2009. Status and future prospects of pest control agents in environmentally -friendly agriculture, and importance of their commercialization. Korean J. Environ. Agri. 28: 301- 309. https://doi.org/10.5338/KJEA.2009.28.3.301
  14. Kim, K. D. and Y. C. Seo. 2009. Evaluation of organochlorine pesticides extraction efficiency by ASE pretreatment. J. Korean Soc. Environ. Anal. 12: 144- 149.
  15. Lee, J. H., Y. H. Jeon, K. S. Shin, H. Y. Kim, E. J. Park, T. H. Kim, and J. E. Kim. 2009. Biological half-lives of fungicides in Korean melon under greenhouse condition. Korean J. Environ. Agricul. 28: 419-426. https://doi.org/10.5338/KJEA.2009.28.4.419
  16. Lee, J. M., H. R. Lee, and S. M. Nam. 2003. Removal rate of residual pesticides in perilla leaves with various washing methods. Korean J. Food Sci. Tech. 35: 586-590.
  17. Lee, K. B., J. H. Shim, and Y. T. Suh. 1994. In vivo metabolism of endosulfan in carp (Cyprinus carpio L.). Agri. Chem. & Biotech. 37: 194-202.
  18. Lee, S. M., S. S. Kim, D. S. Park, and J. H. Hur. 2005. Mobility of pesticides in different soil textures and gravel contents under soil column. The Korean J. Pesticide Sci. 9: 330-337.
  19. Park, B. J., H. J. Park, B. M. Lee, Y. B. Ihm, J. H. Choi, and G. H. Ryu. 2005. Persistence and degradation of herbicide molinate in paddy-soil environment. The Korean J. Pesticide Sci. 9: 60-69.
  20. Pereira, L. A. and S. Rath. 2009. Molecularly imprinted solid-phase extraction for the determination of fenitrothion in tomatoes. Anal. & Bioanal. Chem. 393: 1063-1072. https://doi.org/10.1007/s00216-008-2511-0
  21. Philip, W. Lee, 2003, Handbook of residue analytical methods for agrochemicals. 1: 13-17.
  22. Ryang, H. S., Y. H. Moon, and N. E. Kim. 1988. Studies on persistence of pesticides in soils and crops under polyethylene film mulching culture. Korean J. Environ. Agric. 7: 8-11.
  23. Seo, Y. C., M. K. Heo, S. Y. Kim, J. E. Shin, Y. H. Park, and K. D. Kim. 2008. Efficiency evaluation of organophosphorus pesticides analysis by ASE pre-treatment technique and its application to vegetable samples. J. Korean Soc. Environ. Anal. 11: 1-5.
  24. Shin, H. S., T. K. Kim, and J. E. Kim. 2009. Dechlorination of organochlorine insecticide, endosulfan by zerovalent iron. Korean J. Environ. Agri. 28: 202-208. https://doi.org/10.5338/KJEA.2009.28.2.202
  25. Yoo, S. H. 1999. Perspectives of sustainable agriculture in Korea. Proceedings of International Symposium on Farm Mechanization for Environment Friendly Agriculture. Korean Soc. of Agri. Machin. 139-163.