Antifungal activity of extracts from Chamaecyparis obtusa and Pseudotsuga menziesii against Trichoderma spp.

국내산 침엽수 추출물의 Trichoderma spp.에 대한 항균활성

  • Jung, Ji-Young (Div. of Environ. For. Sci. Gyeongsang National Univ. Insti. of Agric. & Life Sci.) ;
  • Kim, Ji-Woon (Div. of Environ. For. Sci. Gyeongsang National Univ. Insti. of Agric. & Life Sci.) ;
  • Kim, Yeong-Suk (Gyeongsang National Univ. Insti. of Agric. & Life Sci.) ;
  • Park, Han-Min (Div. of Environ. For. Sci. Gyeongsang National Univ. Insti. of Agric. & Life Sci.) ;
  • Lee, Byung-Hyun (Div. of Appl. Life Sci. (BK 21), PMBBRC, Gyeongsang National Univ. Insti. of Agric. & Life Sci.) ;
  • Choi, Myung-Suk (Div. of Environ. For. Sci. Gyeongsang National Univ. Insti. of Agric. & Life Sci.) ;
  • Yang, Jae-Kyung (Div. of Environ. For. Sci. Gyeongsang National Univ. Insti. of Agric. & Life Sci.)
  • 정지영 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 김지운 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 김영숙 (경상대학교 농업생명과학연구원) ;
  • 박한민 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 이병현 (경상대학교 응용생명과학부(BK 21), 동물생명과학과, 농업생명과학연구원, PMBBRC) ;
  • 최명석 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 양재경 (경상대학교 환경산림과학부(농업생명과학연구원))
  • Received : 2011.06.28
  • Accepted : 2011.08.25
  • Published : 2011.08.31

Abstract

The aim of this study was development of natural antifungal compounds from softwood. We investigated antifungal activities of extracts from Pseudotsuga menziesii and Chamaecyparis obtusa against Tricholderma genus which is virus causing green mold disease and analyzed antifungal compounds by Gas chromatography -Mass Spetrometer. Extracts from P. menziesii had inhibition activities against Tricholderma genus on 1,000 ppm and had high antifungal activities against T. viride by 70.1%, T. harzianum by 67.3% and T. aggressivum by 64.7% on 4,000 ppm. And extracts from C. obtusa had antifungal activities against Tricholderma genus on 1,000 ppm and had high antifungal activities against T. viride by 63.2%, T. harzianum by 59.3% and T. aggressivum by 59.1% on 4,000 ppm. But mixing compounds which are made from P. menziesii and C. obtusa extracts by variety ratio had lower antifungal activities than original extracts. Main antifungal active components of P. menziesii extracts against Tricholderma genus were 2-Isopropoxy-ethylamine 46.5%, epifluorohydrin 8.6%, trans-2,3-Di-methyloxirane 7.6%, (IR)-(-)-Myrtenal 6.0%, 2-Methoxy-4-Vinylphenol 3.9% and benzaldehyde 2.8%. In case of C. obtusa extracts, they were ${\alpha}$-Terpinenyl acetate 14.9%, Sabinene 10.9%, dl-Limonene 9.6%, ${\alpha}$-Terpinolene 7.5% and ${\alpha}$-Pinene 7.1%. As mentioned above, these results revealed extracts from P. menziesii and C. obtusa of softwood could be used as potential agents to inhibit Trichoderma genus.

본 연구는 국내산 침엽수로부터 천연 항균화합물 개발을 목표로 미송 및 편백으로부터 추출물을 확보하여 푸른곰팡이병의 원인균인 Trichoderma spp. 5종을 대상으로 항균활성을 테스트하고 GC/MS를 이용하여 항균화합물을 탐색하였다. 미송 추출물은 Trichoderma spp.에 대해 1,000 ppm에서 저해 활성을 나타냈으며, 4,000 pp에서는 T. viride>T. harzianum>T. aggressivum 순으로 70.1, 67.3, 64.7%의 높은 항균활성을 나타냈다. 편백 추출물도 1,000 ppm에서 항균활성을 나타냈고 4,000 ppm에서 T. viride>T. harzianum>T. aggressivum 순으로 63.2, 59.3, 59.1%의 높은 항균활성을 나타냈다. 그러나 1,000 ppm의 미송추출물과 1,000 ppm의 편백추출물을 각각 9:1, 8:2, 6:4, 2:8 (w/w) 비율의 혼합제제로 만들어 Trichoderma spp.에 처리하였을 때 미송추출물 1,000 ppm 및 편백추출물 1,000 ppm 각각의 단일추출물보다 낮은 항균활성을 나타냈다. Trichoderma spp. 5종에 대해 높은 항균활성을 나타내는 미송추출물에서는 2-Isopropoxy-ethylamine 46.5%, epifluorohydrin 8.6%, trans-2,3-Di-methyloxirane 7.6%, (IR)-(-)-Myrtenal 6.0%, 2-Methoxy-4-Vinylphenol 3.9%, benzaldehyde 2.8%가 함유되어 있었고, 편백추출물에서는 ${\alpha}$-Terpinenyl acetate 14.9%, Sabinene 10.9%, dl-Limonene 9.6%, ${\alpha}$-Terpinolene 7.5%, ${\alpha}$-Pinene 7.1%가 함유된 것이 확인되었다.

Keywords

References

  1. Anderson, M. G., D. M. Beyer, and P. J. Wuest. 2000. Using spawn strain resistance to manage Trichoderma green mold. In Science and Cultivation of Edible fungi. Mushroom Sci. 15: 641-644.
  2. Baricevic, D., L. Milevoj, and J. Borstnik. 2001. Insecticidal effect of oregano (Origanum vulgare L.ssp. hirtum ietswaart) on bean weevil (Acanthoscelides obtectus say). Intern. J. Horticul. Sci. 7: 84-88.
  3. Bayer, D. M., P. J. Wuest, and J. J. Kremser. 2000. Evaluation of epidermilolgical factors and mushroom substrate characteristics influencing the occurrence and development of Trichoderma green mold. In Science and Cultivation of Edible fungi: Mushroom Sci. 15: 633-640.
  4. Carson, C. F. and T. V. Riley. 1995. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appli. Bacteriol. 78: 264- 269. https://doi.org/10.1111/j.1365-2672.1995.tb05025.x
  5. Caccioni, D. R. L., M. Guizzardi, D. M. Biondi, A. Renda, and G. Ruberto. 1998. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicym, Intern. J. Food Microbiol. 43: 73-79. https://doi.org/10.1016/S0168-1605(98)00099-3
  6. Chantraine, J. M., D. Laurent, C. Ballivial, G. Saavedra, R. Ibanez, and L. A. Vilaseca. 1998. Insecticidal activity of essentional oils on Aedes aegypti larvae. Phytotherapy Res. 12: 350-354. https://doi.org/10.1002/(SICI)1099-1573(199808)12:5<350::AID-PTR311>3.0.CO;2-7
  7. Cimanga, K., K. Kambu, L. Tona, S. Apers, T. Bruyne, N. Hermans, J. Totte, L. Pieters, and A. J. Vlietinck. 2002. Correlation between chemical composition and antibacterial activity of essential oils of aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 79: 213-220. https://doi.org/10.1016/S0378-8741(01)00384-1
  8. Daayf, F., A. Schmitt, and R. R. Belanger. 1995. The effects of plat extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Dis. 79: 577-580. https://doi.org/10.1094/PD-79-0577
  9. Danesh, Y. R., E. M. Goltapeh, and H. Tohani. 2000. Identification of Trichoderma species causing green mold in button mushroom farms, distribution and their relative abundance. In Science and Cultivation of Edible fungi. Mushroom Sci. 15: 654-659.
  10. Doeer, J. K., E. A. Hollis, and I. G. Sipes. 1996. Species difference in the ovarian toxicity of 1,3- butadiene epoxides in B6C3F, mice and Sprague- Dawley rats. Toxicol. 113: 128-136. https://doi.org/10.1016/0300-483X(96)03437-3
  11. Duke, S. O. 1993. Natural pesticides from plants. In : Janick, J., Simon, J. E. (Eds.), Advances in New Crops. Timber Oress, Portland, OR, 551-517.
  12. Erdtman, H. and J. Gripenberg. 1948, Antibiotic substances from the heart wood of Thuja plicata Don. Naturem 161: 719. https://doi.org/10.1038/161719a0
  13. Ge, H. L., H. L. Zhao, and J. H. Guo. 2004. Research and development situation of microbiological pesticide in plant soil-borned diseases. J. Anhui Agric. Sci. 32: 153-155.
  14. Grogan, H. M., A. Scruby, and L. Harvey. 2000. Moulds in spawn-run compost and their effect on mushroom production. In Science and Cultivation of Edible fungi. Mushroom Sci. 15: 609-615.
  15. Hassanzadeh, M.K., Rahimizadeh, M., Bazzaz, B.S.F., Emami, S. A. and J. Asilli. 2001. Chemical and antimicrobial studies of Platycladus orientalis essential oils. Pharmaceut. Biol. 39: 388-390. https://doi.org/10.1076/phbi.39.5.388.5894
  16. Hayashi, S., K. Yano, and T. Matsuura. 1964. The monoterpene consituents of the essential oil from hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.). Bull. Chem, Soc. Japan 37: 474-476. https://doi.org/10.1246/bcsj.37.474
  17. Hong, C. U., C. S. Kim, N. G. Kim, and Y. H. Kim. 2001. Composition of essential oils from the leaves and the fruits of Chamaecyparis obtusa and Chamaecyparis pisifera. Korean Soc. Agric. Chem. Biotechnol. 44: 116-121.
  18. Jeong, J. B. and H. J. Jeong. 2010. 2-Methoxy-4- vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells. Biochem. Biophys. Res. Communic. 400: 752-757. https://doi.org/10.1016/j.bbrc.2010.08.142
  19. Jeong, M. H., W. Y. Choi, Y. C. Seo, H. Y. Kang, G. P. Choi, and H. Y. Lee. 2010. Anticancer activity of Acer mono wood extracted by ultra high pressure extraction process. Korean J. Medicinal Crop Sci. 18: 157-167.
  20. Kazemifard. A. G., D. E. Moore, A. Mohammadi, and A. Kebriyaeezadeh 2003. Capillary gas chromatography determination of benzaldehyde arising from benzyl alcohol used as preservative in injectable formulations. J. Pharmac. Biomed. Analy. 31: 685-691. https://doi.org/10.1016/S0731-7085(02)00729-X
  21. Kim, J. J., H. K. Song, and C. H. Han. 2001. Antifungal activities of extracts from the various parts of the genus Pinus trees. J. Korean Soc. Agric. Chem. Biotechnol. 44: 269-272.
  22. Lee, K. K. 1999, Antimicrobial activity of Thuja orientalis and Chamaecyparis obtusa essential oil. J. Kor. Soc. Cosm. 5: 567-577.
  23. Lee, S. Y., S. B. Lee, Y. K. Kim, and S. J. Hwang, 2006. Biological control of galic acid white rot accused by Sclereotium cepivorum and Sclereotium sp. using Bacillus subtilis 122 and Trichoderma harzianum 23. Res. Plant Dis. 12: 81-84. https://doi.org/10.5423/RPD.2006.12.2.081
  24. Lin, T. C., J. M. Fang, and Y. S. Cheng, 1999. Terpenes and lignans from leaves from Chamaecyparis formosensis. Phytochem. 51: 793-801. https://doi.org/10.1016/S0031-9422(99)00074-6
  25. Lina, R. A. and S. G. Manuel. 2007. Antifungal activity of a protean extract from Amaranthus hypochondriacus Seeds. J. Mex. Chem. Soc. 51: 136- 140.
  26. Manohar, V., C. Ingram, J. Gray, N. A. Talpur, B. W. Echard, B. Bagchi, and H. G. Preuss. 2001. Antifungal activities of origanum oil against Candida albicans. Mol. Cell. Biochem. 228: 111-117. https://doi.org/10.1023/A:1013311632207
  27. Muthumeenakshi, S., P. R. Mills, A. E. Brown, and D. A. Seaby. 1994. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiol. 140: 769-777. https://doi.org/10.1099/00221287-140-4-769
  28. Oh, B. T., S. G. Choi, and S. H. Cho. 2006. Antimicrobial & physiological characteristics of ethanol extract from Pinus rigida Miller leaves. Korean J. Food Preserv. 13: 629-633
  29. Philp, R. W., A. Bruce, and A. G. Munro. 1995. The effect of water soluble Scots Pine (Pinus sylvestris L.) and Sitka Spruce [Picea sitchensis (Bong.) Carr.] heartwood and sapwood extracts on the growth of selected Trichoderma species. Intern. Biodeterior. Biodegrad. 355-367.
  30. Rozza, A. L., De Mello Moraes, T., Kushima, H., Tanimoto, A., Mayo Marques, M. O., Bauab, T. M., Hiruma-Lima, C. A. and Pellizzon, C. H. 2010. Ariane Leite Rozza, Thiago de Mello Moraes, Helio Kushima, Alexandre Tanimoto, Marcia Ortiz Mayo Marques, Tais Maria Bauab, Clelia Akiko Hiruma-Lima, Claudia Helena Pellizzon. 6380-1387.
  31. Samuels, G. J. 1996. Trichoderma : a review of biology and systematics of the genus. Mycol. Res. 100: 923-935. https://doi.org/10.1016/S0953-7562(96)80043-8
  32. Samuels, G. J., S. L.., Dodd, W. Game, L. A. Castlebury, and O. Petrini. 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94: 146-170. https://doi.org/10.2307/3761854
  33. Seo, W. T., J. K. Yang, B. K. Kang, J. S. Park, W. C.. Hong, Y. M. Kang, H. Y. Jung, Y. D. Kim, S. M. Kang, S. W. Kim, and M. S. Choi, 2003. Extraction and biological activities of essential oil from Thuja occidental leaves. Korean J. Medicinal Crop Sci., 11: 364-370.
  34. Shieh, B., Y. Iizuka, and Y. Matsubara. 1981. Monoterpenenoid and sesquiterpenoid consituents of the essential oil of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.). Agric. Biol. Chem. 45: 1497- 1499. https://doi.org/10.1271/bbb1961.45.1497
  35. Singh, A. K., A. Dikshit, M. L. Sharma, and S. N. Dixit. 1980. Fungitoxic activity of some essential oils. Econ. Bot. 34: 186-190. https://doi.org/10.1007/BF02858635
  36. Singh, P., R. Shukla, B. Prakash, A. Kumar, S. Singh, P. K. Mishra, and N. K. Dubey. 2010. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chem. Toxicol. 48: 1734-1740. https://doi.org/10.1016/j.fct.2010.04.001
  37. Sokovic, M. and Leo J. L. D. van Griensven. 2006. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Europ. J. Plant Pathol. 116: 211-224. https://doi.org/10.1007/s10658-006-9053-0
  38. Southwell, I. A. 2005. 25 Years of natural product R&D with New South Wales agriculture. Molecule. 10: 1232-1241. https://doi.org/10.3390/10101232
  39. Yammno, H., T. Yamazaki, K. Sato, S. Shiga, T. Hagiwara, K. Ouchi, and T. Kishimoto. 2005. In vitro effects of hinokitol on proliferation of chlamydia trachomatis. Antimicrob. Agents and Chemother. 49: 2519-2521. https://doi.org/10.1128/AAC.49.6.2519-2521.2005
  40. Yen, T., H. Chang, C. Hsieh, and S. Chang. 2008. Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. fomosana (Florin) heartwood Bioresour. Technol. 99: 4871-4877. https://doi.org/10.1016/j.biortech.2007.09.037
  41. Yeo, H. D., Jung, J. Y., Nam, J. B., Kim, J. W., Kim, H. K., Choi, M. S. and Yang, J. K. Glen Alm, Danny Lee Rinker. 2009. Antifungal activity against Trichoderma spp. of water soluble essential oil extracted from Pinus densiflora and Chamaecyparis obtusa. Mokchae Konghak 37: 585-599.