참고문헌
- A. Korner and J. Pawelek, Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin, Science, 217(4565), 1163 (1982). https://doi.org/10.1126/science.6810464
- S. C. Taylor, Skin of color: biology, structure, function, and implications for dermatologic disease, J. Am. Acad. Dermatol., 46, S41 (2002). https://doi.org/10.1067/mjd.2002.120790
- V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals. FASEBJ, 5(14), 2902 (1991). https://doi.org/10.1096/fasebj.5.14.1752358
- I. J. Jackson, D. M. Chambers, K. Tsukamoto, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, and V. J. Hearing, A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus, EMBO J., 11(2), 527 (1992).
- K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, S. Nishiyama, K. Urabe, and V. J. Hearing, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPAchrome tautomerase (TRP2), and a melanogenic inhibitor, J. Invest. Dermatol., 100(2), 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
- P. Aroca, F. Solano, C. Salinas, J. C. Garcia-Borron, and J. A. Lozano, Regulation of the final phase of mammalian melanogenesis: The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole- 2-carboxylic acid and 5,6-dihydroxyindole, Eur. J. Biochem., 208(1), 155 (1992). https://doi.org/10.1111/j.1432-1033.1992.tb17169.x
- A. Arrunátegui, C. Arroyo, L. Garcia, C. Covelli, C. Escobar, E. Carrascal, and R. Falabella, Melanocyte reservoir in vitiligo, Int. J. Dermatol., 33(7), 484 (1992).
- P. Manga, D. Sheyn, F. Yang, R. Sarangarajan, and R. E. Boissy. A role for tyrosinase-related protein1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo, Am. J. Pathol., 169(5), 1652 (2006). https://doi.org/10.2353/ajpath.2006.050769
- A. B. Lerner, On the etiology of vitiligo and gray hair, Am. J. Med., 51(2), 141 (1971). https://doi.org/10.1016/0002-9343(71)90232-4
- J. J. Nordlund, The pigmentary system and inflammation, Pigment. Cell. Res., 5(5), 362 (1992). https://doi.org/10.1111/j.1600-0749.1992.tb00563.x
- W. Englaro, R. Rezzonico, M. Durand-Clement, D. Lallemand, J. P. Ortonne, and R. Ballotti, Mitogenactivated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B16 melanomacells, J. Biol. Chem., 270(41), 24315 (1995). https://doi.org/10.1074/jbc.270.41.24315
- J. Lee, E. Jung, J. Park, K. Jung, E. Park, J. Kim, S. Hong, J. Park, S. Park, S. Lee, and D. Park, Glycyrrhizin induces melanogenesis by elevating a cAMP level in B16 melanoma cells, J. Invest. Dermatol., 124(2), 405 (2005). https://doi.org/10.1111/j.0022-202X.2004.23606.x
- S. K. Singh, C. Sarkar, S. Mallick, B. Saha, R. Bera, and R. Bhadra, Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma, Pigment.Cell. Res., 18(2), 113 (2005). https://doi.org/10.1111/j.1600-0749.2005.00219.x
- R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment. Cell. Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
- L. Brault, E. Migianu, A. Nelquesque, E. Battaaglia, D. Bagrel, and G. Kirsch, New thiophene analogues of kenpaullone: synthesis and biological evaluation in breast cancer cells, Eur. J. Med. Chem., 40(8), 757 (2005). https://doi.org/10.1016/j.ejmech.2005.02.010
- V. J. Hearing, Mammalian monophenol monooxygenase (tyrosinase): purification, properties, and reactions catalyzed, Method. Enzymol., 142, 154 (1987).
- M. Khaled, L. Larribere, K. Bille, E. Aberdam, J. P. Ortonne, R. Ballotti, and C. Bertolotto, Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis, J. Biol. Chem., 277(37), 33690 (2002). https://doi.org/10.1074/jbc.M202939200
- H. J. Park, Y. J. Kim, K. Leem, S. J. Park, J. C. Seo, H. K. Kim, and J. H. Chung, Coptis japonica root extract induces apoptosis through caspase3 activation in SNU-668 human gastric cancer cells, Phytother. Res., 19(3), 189 (2005). https://doi.org/10.1002/ptr.1539
- A. E. Hughes, V. E. Newton, X. Z. Liu, and A. P. Read, A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1, Nat. Genet., 7(4), 509 (1994). https://doi.org/10.1038/ng0894-509
- M. Tassagehji, V. E. Newton, and A. P. Read, Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene, Nat. Genet., 8(3), 251 (1994). https://doi.org/10.1038/ng1194-251
- B. Bellei, E. Flori, E. Izzo, V. Maresca, and M. Picardo, GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes, Cell. Signal., 20(10), 1750 (2008). https://doi.org/10.1016/j.cellsig.2008.06.001
- K. Takeda, C. Takemoto, I. Kobayashi, A. Watanabe, Y. Nobukuni, D. E. Fisher, and M. Tachibana, Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance, Hum. Mol. Genet. 9(1), 125 (2000). https://doi.org/10.1093/hmg/9.1.125
- V. J. Hearing, Biochemical control of melanogenesis and melanosomal organization, J. Investig. Dermatol. Symp. Proc., 4(1), 24 (1999). https://doi.org/10.1038/sj.jidsp.5640176
- V. Del Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996). https://doi.org/10.1016/0014-5793(96)00109-3
- S. B. Levy, Dihydroxyacetone-containing sunless or self-tanning lotions, J. Am. Acad. Dermatol., 27(6), 989 (1992). https://doi.org/10.1016/0190-9622(92)70300-5