DOI QR코드

DOI QR Code

Exploration of the Gene-Gene Interactions Using the Relative Risks in Distinct Genotypes

유전자형별 상대 위험도를 이용한 유전자-유전자간 상호작용 탐색

  • Jung, Ji-Won (Biotoxtech, Inc.) ;
  • Yee, Jae-Yong (Department of Physiology and Biophysics, Eulji University) ;
  • Lee, Suk-Hoon (Department of Statistics, Chungnam National University) ;
  • Pa, Mi-Ra (Department of Preventive Medicine, Eulji University)
  • Received : 20110700
  • Accepted : 20110900
  • Published : 2011.10.31

Abstract

One of the main objects of recent genetic studies is to understand genetic factors that induce complex diseases. If there are interactions between loci, it is difficult to find such associations through a single-locus analysis strategy. Thus we need to consider the gene-gene interactions and/or gene-environment interactions. The MDR(multifactor dimensionality reduction) method is being used frequently; however, it is not appropriate to detect interactions caused by a small fraction of the possible genotype pairs. In this study, we propose a relative risk interaction explorer that detects interactions through the calculation of the relative risks between the control and disease groups from each genetic combinations. For illustration, we apply this method to MDR open source data. We also compare the MDR and the proposed method using the simulated data eight genetic models.

최근 유전학에서 주요 목표중 하나는 복합질환에 영향을 미치는 유전적 요인을 찾아내는 것이다. 유전자좌간의 상호작용이 있을 때에는 단일 유전자좌 분석으로는 이러한 목표를 달성하기 어려우므로, 유전자-유전자간 상호작용이나 유전자-환경인자간 상호작용분석을 고려할 필요가 있다. 자주 사용되는 MDR(multifactor dimensionality reduction)방법은 데이터를 고위험군과 저위험군으로 각각 병합하여 사용하므로 특정 유전자형에서 차이가 나는 경우에는 이를 찾아내기 어렵다. 본 연구에서는 이러한 점을 보완하도록 유전자형 조합에서의 대조군과 질환군의 상대위험도를 이용하여 유전자-유전자간 상호작용을 탐색하는 방법을 제안하였다. MDR 공개데이터와 8가지 유전모형으로부터 생성한 모의자료의 분석을 통해 방법의 유용성을 확인하였다.

Keywords

References

  1. Agresti, A. (1992). A survey if exact inference for contingency tables, Statistical Science, 7, 131-153. https://doi.org/10.1214/ss/1177011454
  2. Chung, Y., Lee, S. Y., Elston, R. C. and Park, T. (2007). Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions, Bioninformatics, 23, 71-76. https://doi.org/10.1093/bioinformatics/btl557
  3. Cordell, H. J. (2009). Detecting gene-gene interactions that underlie human diseases, Nature Reviews Genetics, 10, 392-404.
  4. Dong, C., Chu, X., Wang, Y., Jin, L., Shi, T., Huang, W. and Li, Y. (2008). Exploration of gene-gene interaction effects using entropy-based methods, European Journal of Human Genetics, 16, 229-235. https://doi.org/10.1038/sj.ejhg.5201921
  5. Heidema, A. G., Boer, J. M. A., Nagelkerke, N., Mariman, E. C. M., Van der, A, D. L. and Feskens, E. J. M. (2006). The challenge for genetic epidemiologists: How to analyze large numbers of SNPs in relation to complex diseases, BMC Genetics, 7, 1-15.
  6. Lee, S. Y., Chung, Y., Elston, R. C., Kim, Y. and Park, T. (2007). Log-linear model-based multifactor dimensionality reduction method to detect gene-gene interactions, Bioinformatics, 23, 2589-2595. https://doi.org/10.1093/bioinformatics/btm396
  7. Lou, X. Y., Chen, G. B., Yan, L., Ma, J. Z., Zhu, J., Elston, R. C. and Li, M. D. (2007). A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence, The American Journal of Human Genetics, 80, 1125-1137. https://doi.org/10.1086/518312
  8. Lou, X. Y., Chen, G. B., Yan, L., Ma, J. Z., Mangold, J. E., Zhu, J., Elston, R. C. and Li, M. D. (2008). A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies, The American Journal of Human Genetics, 83, 457-467. https://doi.org/10.1016/j.ajhg.2008.09.001
  9. Namkung, J., Elston, R. C., Yang, J. M. and Park, T. (2009). Identification of gene-gene interactions in the presence of missing data using the multifactor dimensionality reduction method, Genetic Epidemiology, 33, 646-656. https://doi.org/10.1002/gepi.20416
  10. Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F. and Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, The American Society of Human Genetics, 69, 138-147. https://doi.org/10.1086/321276
  11. Zelen, M. (1971). The analysis of several 2 ${\times}$ 2 contingency tables, Biometrika, 58, 129-137.

Cited by

  1. Detecting Genetic Association and Gene-Gene Interaction using Network Analysis in Case-Control Study vol.25, pp.4, 2012, https://doi.org/10.5351/KJAS.2012.25.4.563