DOI QR코드

DOI QR Code

Multi-Layered Matrix Tablets with Various Tablet Designs and Release Profiles

  • Received : 2011.09.26
  • Accepted : 2011.10.11
  • Published : 2011.10.20

Abstract

Tablet dosage forms have been preferred over other formulations for the oral drug administration due to their low manufacturing costs and ease of administrations, especially controlled-release applications. Controlled-release tablets are oral dosage forms from which the active pharmaceutical ingredient (API) is released over an intended or extended period of time upon ingestion. This may allow a decrease in the dosing frequency and a reduction in peak plasma concentrations and hence improves patient compliance while reducing the risk of undesirable side effects. Conventional singlelayered matrix tablets have been extensively utilized to deliver APIs into the body. However, these conventional single-layered matrix tablets present suboptimal delivery properties, such as non-linear drug delivery profiles which may cause higher side effects. Recently, a multi-layered technology has been developed to overcome or eliminate the limitations of the singlelayered tablet with more flexibility. This technology can give a good opportunity in formulating new products and help pharmaceutical companies enhancing their life cycle management. In this review, a brief overview on the multi-layered tablets is given focusing on the various tablet designs, manufacturing issues and drug release profiles.

Keywords

References

  1. Abdul, S., Poddar, S.S., 2004. A flexible technology for modified release of drugs: multi layered tablets. J. Control. Release 97, 393-405. https://doi.org/10.1016/S0168-3659(04)00186-5
  2. Anuar, M.S., Briscoe, B.J., 2009. The elastic relaxation of starch tablets during ejection. Powder Technol. 195, 96-104. https://doi.org/10.1016/j.powtec.2009.05.019
  3. Anuar, M.S., Briscoe, B.J., 2010. Interfacial elastic relaxation during the ejection of bi-layered tablets. Int. J. Pharm. 387, 42-47. https://doi.org/10.1016/j.ijpharm.2009.11.031
  4. Benkorah, A.Y., McMullen, J.N., 1994. Biconcave coated, centrally perforated tablets for oral controlled drug delivery. J. Control. Release 32, 155-160. https://doi.org/10.1016/0168-3659(94)90054-X
  5. Bidmeier, R., Paeratakul, O., 1990. Drug release form laminated polymeric films prepared from aqueous latexes. J. Pharm. Sci. 79, 32-36. https://doi.org/10.1002/jps.2600790109
  6. Bogan, R.K., 2008. Treatment options for insomnia-pharmacodynamics of zolpidem extended-release to benefit next-day performance. Postgrad. Med. 120, 161-171. https://doi.org/10.3810/pgm.2008.09.1916
  7. Brooke, D., Walshkuhn, R.J., 1977. Zero-order drug delivery system: theory and preliminary testing. J. Pharm. Sci. 66, 159-162. https://doi.org/10.1002/jps.2600660206
  8. Buri, P., Doelker, E., 1980. Formulation des comprimes a liberation prolengee: II. Matrices hydrophiles. Pharm. Acta. Helv. 7-8, 189-197.
  9. Buri, P., Puisicux, F., Doelker, E., Benoit, J.P., 1985. Formes Pharmacentiques Nouvelles, Ed. Technique et Documentation, Lavoisier, Paris.
  10. Busignies, V., Leclerc, B., Porion, P., Evesque, P., Couarraze, G., Tchoreloff, P., 2006. Compaction behavior and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. Eur. J. Pharm. Biophar. 64, 66-74. https://doi.org/10.1016/j.ejpb.2006.03.004
  11. Cahyadi, C., Chan, L.W., Colombo, P., Heng, P.W.S., 2011. The butterfly effect: A physical phenomenon of hypromellose matrices during dissolution and the factors affecting its occurrence. Int. J. Pharm. 406, 31-40. https://doi.org/10.1016/j.ijpharm.2010.12.028
  12. Chien, Y.W., 1982. Fundamentals of controlled-release of drug administration, in: J. Swarbrick (Ed.), Novel Drug Delivery System, Marcel Dekker, New York, pp. 465-574.
  13. Cobby, J., Mayersohn, M. and Walker, G.C., 1974a. Influence of shape factors on kinetics ofdrug release from matrix tablets. I: theoretical. J.Pharm.Sci.63: 724-731.
  14. Cobby, J., Mayersohn, M. and Walker, G.C., 1974b. Influence of shape factors on kinetics ofdrug release from matrix tablets. II: theoretical. J.Pharm.Sci.63: 732-737. https://doi.org/10.1002/jps.2600630517
  15. Colombo, P., Conte, U., Gazzaniga, A., Maggi, L., Sangalli, M.E., Peppas, N.A., La Manna, A., 1990. Drug release modulation by physical restriction of matrix swelling. Int. J. Pharm. 63, 43-48. https://doi.org/10.1016/0378-5173(90)90099-P
  16. Colombo, P., Gazzaniga, A., Caramella, C., Conte, U., La Manna, A., 1987. In vitro progragmmable zero-order release drug delivery systems. Acta Pharm. Technol. 33, 15-20.
  17. Conte, U., La Manna, A., Maggi, L., 1995. Pharmaceutical tablets releasing the active substances after a definite period of time. U.S. patent 5,464,633, November 7.
  18. Conte, U., La Manna, A., Maggi, L., 1997. Controlled release pharmaceutical tablet having lenticular from. U.S. Patent 5,626,874, May 6.
  19. Conte, U., Maggi, L., 1987. Geomatrix tablets for the pulsatile release of drugs, Proceedings of the 24th International Symposium on Controlled Release of Bioactive Materials, Stockholm, Sweden, June 15-19, pp. 291-292.
  20. Conte, U., Maggi, L., 1998. Multilayer tablets as drug delivery devices. Pharm. Technol. 22(3), 174-182.
  21. Conte, U., Maggi, L., 2000. A flexible technology for the linear, pulsatile and delayed release of drugs, allowing for easy accommodation of difficult in vitro targets. J. Control. Release 64, 263-268. https://doi.org/10.1016/S0168-3659(99)00147-9
  22. Conte, U., Maggi, L., Colombo, P., La Manna, A., 1993. Multi-layered hydrophilic matrices as constant release devices ($Geomatrix^{TM}$ Systems). J. Control. Release 26, 39-47. https://doi.org/10.1016/0168-3659(93)90207-L
  23. Conte, U., Maggi, L., Giunchedi, P., La Manna, A., 1992. New oral for timing release of drugs. Boll. Chim. Farm. 131(5), 198-204.
  24. Conte, U., Maggi, L., Torre, M.L., Giunchedi, P., La Manna, A., 1993. Press-coated tablets for time-programmed release of drugs. Biomaterials 14, 1017-1023. https://doi.org/10.1016/0142-9612(93)90195-8
  25. Danckwerts, M.P., 1994. Development of a zero-order release oral compressed tablet with potential for commercial tabletting production. Int. J. Pharm. 112, 34-45.
  26. Danielson, D.W., Morehead, W.T., Rippie, E.G., 1983. Unloading and post compression viscoelastic stress versus strain behavior of pharmaceutical solids. J. Pharm. Sci. 72, 342-345. https://doi.org/10.1002/jps.2600720405
  27. Ebey, G.C., 1996. Bilayer tablet weight control theory. In: Pharm. Tech., Tablet Granulation Year Book, pp. 54-57.
  28. Efentakis, M., Peponaki, C., 2008. Formulation study and evaluation of matrix and three-layer tablet sustained drug delivery systems based on carbopols with isosorbite mononitrate. AAPS PharmSciTech 9, 917-923. https://doi.org/10.1208/s12249-008-9084-2
  29. Fukui, E., Miyamura, N., Kobayashi, M., 2001. An in vitro investigation of the suitability of press-coated tablets with hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydrophobic additives in the outer shell for colon targeting. J. Control. Release 70, 97-107. https://doi.org/10.1016/S0168-3659(00)00332-1
  30. Fukui, E., Uemura, L., Kobayashi, M., 2000. Studies on applicability of press-coated tablets using hydroxypropylcellulose in the outer shell for timed-release preparation. J. Control. Release 68, 215-223. https://doi.org/10.1016/S0168-3659(00)00261-3
  31. Halsas, M., Simelius, R., Kiviniemi, A., Veski, P., Jurjenson, H., Marvola, M., 1998. Effect of different combinations of hydroxypropylmethylcellulose and bioavailability of ibuprofen from press-coated time-controlled tablets. STP Pharm Sci. 8, 155-161.
  32. Hildgen, D., McMullen, J.N., 1995. A new gradient matrix: formulation and characterization. J. Control. Release 34, 263-271. https://doi.org/10.1016/0168-3659(95)00014-Y
  33. Hsiesh, D.S.T., Rhine, W.D., Langer, R., 1983. Zero-order controlled-release polymer matrices from micro and macro molecules. J. Pharm. Sci. 72, 17-22. https://doi.org/10.1002/jps.2600720105
  34. Inman, S.J., Briscoe, B.J., Pitt, K.G., 2007. Topographic characterization of cellulose bilayered tablets interfaces. Chem. Eng. Res. Des. 85, 1005-1012. https://doi.org/10.1205/cherd06188
  35. Inman, S.J., Briscoe, B.J., Pitt, K.G., Shiu, C., 2009. The non-uniformity of microcrystalline cellulose bilayer tablets. Powder Technol. 188, 283-294. https://doi.org/10.1016/j.powtec.2008.06.002
  36. Ishino, R., Yoshino, H., Hirakawa, Y., Noda, K., 1992. Design and preparations of pulsatile release tablet as a new oral drug delivery system. Chem. Pharm. Bull. 40, 3036-3041. https://doi.org/10.1248/cpb.40.3036
  37. Junginger, H.L., 1993. Oral applications of pulsatile drug delivery, in: Gurny, R., Junginger, H.L., Peppas, N.A. (Eds.), Pulsative Drug Delivery-Current Application and Future Trends, Wissenschaftliche Verlagsagesellschaft, Stuttgart, pp. 113-134.
  38. Karehill, P.G., Glaser, M., Nystrom, C., 1990. Studies on direct compression of tablets. XXIII. The importance of surface roughness for the compactability of some directly compressible materials with different bonding and volume reduction properties. Int. J. Pharm. 64, 35-43. https://doi.org/10.1016/0378-5173(90)90176-5
  39. Kim, C., 1994. Compressed Donut-shaped tables with zero-order release kinetics. Pharm. Res. 12, 1045-1048.
  40. Krishnaiah, W.S.R., Rama Ral, T., Ushasree, M., Satyanarayana, S., 2002. A study on the in-vitro evaluation of guar gum as a carrier for oral controlled drug delivery. Saudi Pharm. J. 9, 91-98.
  41. Kulkarni, Bhatia, M., 2009. Development and evaluation of bilayer floating tablets of atenolol and lovastatin for biphasic release profile. Iran. J. Pharm. Res. 8, 15-25.
  42. La Manna, A., Conte, U., Colombo, P., 1991. Physical restriction in swellable matrices as modulator of drug release, Eurobiomat Workshop on "Synthetic Polymer as Drug carriers. Interaction with blood." Pallanza, Italy, April 21-24.
  43. Lee, L., 1992. Diffusion-controlled matrix systems, in: A. Kydonieus (Ed.), Treatise on Controlled Drug Delivery, Marcel Dekker, New York, pp. 155-198.
  44. Lee, P.I., 1985. Kinetics of drug release from the hydrogel matrices. J. Control. Release 2, 277-288. https://doi.org/10.1016/0168-3659(85)90051-3
  45. Lemmer, N., 1996. The clinical relevance of chronopharmacology in therapeutics. Pharmacol. Res. 33, 107-115. https://doi.org/10.1006/phrs.1996.0016
  46. Lin, S.-Y., Lin, K.-H., Li, M.-J., 2001. Micronized ethyl cellulose used for designing a directly compressed time-controlled disintegration tablet. J. Control. Release 70, 321-328. https://doi.org/10.1016/S0168-3659(00)00360-6
  47. Lipper, R.A., Higuchi, W.I., 1977. Analysis of theoretical behavior of proposed zero-order drug delivery system. J. Pharm. Sci. 66, 163-164. https://doi.org/10.1002/jps.2600660207
  48. Maggi, L., Morgenthaler, S., Zimmer, R., Shepard, T., Conte, U., 1992. Human evaluation of Quick/Slow drug delivery technology: a new therapeutic approach, Proceedings of the 22nd International Symposium on Controlled Release of Bioactive Materials, Seattle, USA, July 31-August 2, pp. 208-209.
  49. Maggi, L., Shepard, T., Rochdi, M., Grenier, P., Halbeisen, S., Zimmer, R., Conte, U., 1997. A simulation approach for efficient development of a naproxen Geomatrix Quick/Slow formulation, Proceedings of the 24th International Symposium on Controlled Release of Bioactive Materials, Stockholm, Sweden, June 15-19, pp. 327-328.
  50. Matsuo, M., Nakamura, C., Arimori, K., Nakano, M., 1995. Evaluation for hydroxylethylcellulose as a hydrophilic swellable material for delayed-release tablets. Chem. Pharm. Bull. 43(2), 311-314. https://doi.org/10.1248/cpb.43.311
  51. Narisawa, S., Nagata, M., Danyoshi, C., Yoshino, H., Murata, K., Hirakawa, Y., Noda, K., 1994. An organic acid induced sigmoidal release systems for oral controlled-release preparations. Pharm. Res. 11(1), 111-116. https://doi.org/10.1023/A:1018910114436
  52. Narasimhan, B., Langer, R., 1997. Zero-order release of micro and macromolecules from polymeric devices: the role of the burst effect. J. Control. Release 47, 13-20. https://doi.org/10.1016/S0168-3659(96)01611-2
  53. Nelson, K.G., Smith, S.J., Bennett, R.M., 1987. Constant-release diffusion systems: rate control by means of geometric configuration, in: P.I. Lee, W.R. Good (Eds.), Controlled-released Technology: Pharmaceutical Applications, Acs Symposium Series, vol. 348, American Chemical Society, Washington, DC, pp. 324-340.
  54. Nirmal, J., Saisivam, S., Peddanna, C., Muralidharan, S., Nagarajan, M., et al., 2008. Bilayer tablets of atrovastatin calcium and nicotinic acid: formulation and evaluation. Chem. Pharm. Bull. 56, 1455-1458. https://doi.org/10.1248/cpb.56.1455
  55. Otsuka, M., Matsuda, Y., 1995. Progrannable drug release of highly water-soluble pentoxifilline from drug-coated wax matrix tablets. J. Pharm. Sci. 84, 443-447. https://doi.org/10.1002/jps.2600840411
  56. Peppas, N.A., 1988. Hydrogels in Medicine and Pharmacy, vols. I, II and III, CRC Press, Boca Raton, FL.
  57. Peppas, N.A., Sahlin, J.J., 1989. A simple equation for the description of solute release: III. Coupling of diffusion and relaxation. Int. J. Pharm. 57, 169-172. https://doi.org/10.1016/0378-5173(89)90306-2
  58. Phaechamud, T., 2008. Variables influencing drug release from layered matrix system comprising hydroxypropyl methylcellulose. AAPS PharmSciTech 9, 668-674. https://doi.org/10.1208/s12249-008-9085-1
  59. Pozzi, F., Furlani, P., Gazzaniga, A., Davis, S.S., Wilding, I.R., 1994. The time clock system: a new oral dosage from for fast complete release of drug after a predetermined lagtime. Int. J. Pharm. 31, 99-108.
  60. Podczeck, F., 2011. Theoretical and experimental investigations into the delamination tendencies of bilayer tablets. Int. J. Pharm. 408, 102-112. https://doi.org/10.1016/j.ijpharm.2011.02.007
  61. Podczeck, F., Al-Muti, E., 2010. The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose. Eur. J. Pharm. Sci. 41, 483-488. https://doi.org/10.1016/j.ejps.2010.08.002
  62. Reinberg, A.E., 1992. Concepts in chronopharmacology. Annu. Rev. Pharmacol. Toxicol. 32, 51-66. https://doi.org/10.1146/annurev.pa.32.040192.000411
  63. Ritger, P.L., Peppas, N.A., 1987. A simple equation for the description of solute release: II. Fickian and anomalous release from swellable devices. J. Control. Release 5, 37-42. https://doi.org/10.1016/0168-3659(87)90035-6
  64. Samuelov, Y., Donbrow, M., Friedman, M., 1979. Sustainedrelease of drugs from Ethyl cellulose-polyethylene glycol films and kinetics of drug release. J. Pharm. Sci. 68, 325-329. https://doi.org/10.1002/jps.2600680318
  65. Scott, D.C., Hollenbeck, R.G., 1991. Design and manufacture of zero-order sustained-release pellet dosage from through non uniform drug distribution in a diffusional matrix. Pharm. Res. 8, 156-162. https://doi.org/10.1023/A:1015823532764
  66. Shah, A.C., 1987. Therapeutic formulations with bimodal release characteristics. W.O. Patent 87/00044, January 15.
  67. Shah, A.C., Britten, N.J., 1990. Novel divisible design for sustained release formulations. J. Control. Release 14, 179-185. https://doi.org/10.1016/0168-3659(90)90154-L
  68. Shah, A.C., Britten, N.J., Olanoff, L.S., Badalamenti, J.N., 1989. Gelmatrix system exhibiting bimodal controlled-release for oral drug delivery. J. Control. Release 9, 169-175. https://doi.org/10.1016/0168-3659(89)90007-2
  69. Sirkia, T., Makimartti, M., Liukko-Sipe, S., Marvola, M., 1994a. Development and biopharmaceutical evaluation of a new press-coated prolonged-release salbutamol sulfate tablet in man. Eur. J. Pharm. Sci. 195-201.
  70. Sirkia, T., Niemi, J., Marvola, M., Lindqvist, T., Happonen, I., 1994b. Effect of potassium carbonate and viscosity grade of hydroxypropylmethylcellulose on the bioavailability of furosemide from press-coated prolonged-release tablets. STP Pharma Sci. 4, 257-263.
  71. Smlensky, M.H., D'alanzo, G.E., 1993. Medical chronobiology: concepts and applications. Am. Rev. Respir. Dis. 147, s2-s19. https://doi.org/10.1164/ajrccm/147.1.2
  72. Streubel, A., Jsiepmann, A., Peppas, N.A., Bodmeier, R., 2000. Bimodal drug release achieved with multi-layer matrix tablets: transport mechanisms and device design. J. Control. Release 69, 455-468. https://doi.org/10.1016/S0168-3659(00)00334-5
  73. Takenchi, H., Yasuji, T., Yamamoto, H., Kawashima, Y., 2000. Spray dried lactose composite particles containing an ion complex of alginate-chitosan for designing a dry coated tablet having a time-controlled releasing function. Pharm. Res. 17, 94-99. https://doi.org/10.1023/A:1007530927887
  74. Vaithiyalingam, S.R., Sayeed, V.A., 2010. Critical factors in manufacturing multi-layer tablets-Assessing material attributes, inprocess controls, manufacturing process and product performance. Int. J. Pharm. 398, 9-13. https://doi.org/10.1016/j.ijpharm.2010.07.025
  75. Wilding, I.R., Coupe, A.J., Davis, S.S., 1991. The role of gamma scintigraphy in oral drug delivery. Adv. Drug Deliv. Rev. 7, 87-117. https://doi.org/10.1016/0169-409X(91)90049-I
  76. Wu, C.Y., Seville, J.P.K., 2009. A comparative study of compaction properties of binary and layered tablets. Powder Technol. 189, 285-294. https://doi.org/10.1016/j.powtec.2008.04.026
  77. Yang, L., Venkatesh, G., Fassihi, R., 1997. Compaction simulator study of a novel triple-layer tablet matrix for industrial tabletting. Int. J. Pharm. 152, 45-52. https://doi.org/10.1016/S0378-5173(97)04911-9
  78. Zin El-Din, E., El-Shaboury, M.H., El-Aleem, H.A., 1989. Effect of tablet shape on the in vitro and in vivo availability of directly compressed non-disintegrating tablets. Pharm. Ind. 51, 694-696.

Cited by

  1. Rationale and strategies for formulation development of oral fixed dose combination drug products vol.46, pp.7, 2016, https://doi.org/10.1007/s40005-016-0286-4
  2. Orally disintegrating films focusing on formulation, manufacturing process, and characterization vol.47, pp.3, 2017, https://doi.org/10.1007/s40005-017-0311-2