DOI QR코드

DOI QR Code

사람골육종세포주의 트로글리타존 유도 세포사에서 PTEN의 역할

Over-expression of PTEN Involved in Troglitazone-induced Apoptosis in Human Osteosarcoma Cells

  • 윤선중 (전북대학교 의학전문대학원 정형외과학교실, 내분비 연구소) ;
  • 주로 (전북대학교 의학전문대학원 정형외과학교실, 내분비 연구소) ;
  • 김정렬 (전북대학교 의학전문대학원 정형외과학교실, 내분비 연구소)
  • Yoon, Sun-Jung (Department of Orthopaedic Surgery, Medical School and Research Institute for Endocrine Science, Chonbuk National University) ;
  • Zhou, Lu (Department of Orthopaedic Surgery, Medical School and Research Institute for Endocrine Science, Chonbuk National University) ;
  • Kim, Jung-Ryul (Department of Orthopaedic Surgery, Medical School and Research Institute for Endocrine Science, Chonbuk National University)
  • 투고 : 2011.02.28
  • 심사 : 2011.05.30
  • 발행 : 2011.06.30

초록

목적: 본 연구에서는 골육종 세포내 PTEN 발현정도가 세포 성장과 트로글리타존에 대한 반응도에 미치는 영향에 대해 알아보고자 하였다. 대상 및 방법: 웨스턴 블롯 분석을 통해 트로글리타존 처리 후 PTEN 발현 정도를 관찰하였고, WST를 통해 세포 증식정도를 측정하였다. 야생형 PTEN 및 돌연변이형 PTEN 발현시키는 플라스미드 DNA를 트랜스펙션하여 PTEN 발현 정도를 측정하였다. 결과: 사람골육종 세포주 U-2OS는 트로글리타존 처리 농도 및 시간에 비례하여 증식 억제를 보였고, 세포내 PTEN 발현 정도는 트로글리타존 처리 농도에 비례하여 증가하였다. 트로글리타존을 이용하여 U-2OS세포 내 PTEN 발현을 증가시키면 세포 성장 억제와 세포사 유도가 나타났다. 또한 플라스미드 트랜스펙션에 의한 PTEN 과발현은 트로글리타존의 세포증식 억제 효과를 증가 시키며 돌연변이형 PTEN을 트랜스펙션 시키는 경우 세포증식효과는 관찰되지 않았다. 결론: 골육종 세포내 PTEN 과발현이 트로글리타존에 의한 골육종 세포의 증식 억제 및 세포사 유도와 관련 되어있음을 알 수 있으며, 세포내에 PTEN이 과발현 된 상태에서 트로글리타존의 효과가 증가됨을 알 수 있었다.

Purpose: We investigated the effects of phosphatase and tensin homologue deleted on chromosome 10 gene phosphatase and tensin homologue deleted on chromosome 10 gene (PTEN) expression on the cell proliferation and on the responsiveness of troglitazone in osteosarcoma cells. Materials and Methods: Western blotting alnalysis was performed to detect the expression of PTEN in U-2OS cells treated with troglitazone. WST (water-soluble tetrazolium) assay was used to evaluate cell proliferation. Flow cytometry was used to determine cell apoptosis. Further, transfection of wild-type PTEN plasmid DNA was used to upregulate PTEN expression. Results: Troglitazone treatment induced growth inhibition of U2-OS cells in a dose- and time-dependent manner. Troglitazone increased the expression of PTEN in a dose-dependent manner. PTEN upregulation induced by troglitazone treatment resulted in cell growth inhibition and apoptosis in U-2OS cells. PTEN over-expression by plasmid transfection enhanced these effects of troglitazone. Moreover, no changes were observed in the mutant type-PTEN group. Conclusion: Upregulation of PTEN is involved in the inhibition of cell growth and induction of cell apoptosis by troglitazone. Further, PTEN over-expression can cause cell growth inhibition in osteosarcoma cells and these cell growth inhibitions could be enhance by troglitazone treatment.

키워드

참고문헌

  1. Bramwell VH. Osteosarcomas and other cancers of bone. Curr Opin Oncol. 2000;12:330-6. https://doi.org/10.1097/00001622-200007000-00009
  2. Koeffler HP. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res. 2003;9:1-9.
  3. Young PW, Buckle DR, Cantello BC, et al. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther. 1998;284:751-9.
  4. Kim KY, Kim SS, Cheon HG. Differential anti-proliferative actions of peroxisome proliferator-activated receptor-gamma agonists in MCF-7 breast cancer cells. Biochem Pharmacol. 2006;72:530-40. https://doi.org/10.1016/j.bcp.2006.05.009
  5. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 2003;22:5501-10. https://doi.org/10.1093/emboj/cdg513
  6. Kim JY, Kim TK, Park JY, Kim HJ, Lee JW. Effects of the peroxisome proliferator-activated receptor ligand troglitazone in osteosarcoma cell lines. J Korean Orthop Assoc. 2005;40:591-7. https://doi.org/10.4055/jkoa.2005.40.5.591
  7. Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 1997;44:1299-305. https://doi.org/10.1016/S0039-9140(97)00017-9
  8. Ali IU, Schriml LM, Dean M. Mutational spectra of PTEN/ MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 1999;91:1922-32. https://doi.org/10.1093/jnci/91.22.1922
  9. Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C. Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol. 2000;157:1123-8. https://doi.org/10.1016/S0002-9440(10)64627-5
  10. Moon SH, Lee SH, Kim HS, Kim CH, Chung TW. Phosphatase and Tensin Homologue Deleted on Chromosome 10) in Osteosarcoma. J Korean Orthop Assoc. 2003;38: 39-46. https://doi.org/10.4055/jkoa.2003.38.1.39
  11. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1 dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-triphosphate. J Biol Chem. 1998;273:13375-8. https://doi.org/10.1074/jbc.273.22.13375
  12. Stoll V, Calleja V, Vassaux G, Downward J, Lemoine NR. Dominant negative inhibitors of signalling through the phosphoinositol 3-kinase pathway for gene therapy of pancreatic cancer. Gut. 2005;54:109-16. https://doi.org/10.1136/gut.2004.046706
  13. Pedrero JM, Carracedo DG, Pinto CM, et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer. 2005;114:242-8. https://doi.org/10.1002/ijc.20711
  14. Kreisberg JI, Malik SN, Prihoda TJ, et al. Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res. 2004;64:5232-6. https://doi.org/10.1158/0008-5472.CAN-04-0272
  15. Cao LQ, Chen XL, Wang Q, et al. Upregulation of PTEN involved in rosiglitazone-induced apoptosis in human hepatocellular carcinoma cells. Acta Pharmacol Sin. 2007;28:879-87. https://doi.org/10.1111/j.1745-7254.2007.00571.x
  16. Yim HW, Jong HS, Kim TY, et al. Cyclooxygenase-2 inhibits novel ginseng metabolite-mediated apoptosis. Cancer Res. 2005;65:1952-60. https://doi.org/10.1158/0008-5472.CAN-04-1740
  17. Okano H, Shiraki K, Inoue H, et al. 15-deoxy-delta-12-14-PGJ2 regulates apoptosis induction and nuclear factor-kappaB activation via a peroxisome proliferator-activated receptorgamma- independent mechanism in hepatocellular carcinoma. Lab Invest. 2003;83:1529-39. https://doi.org/10.1097/01.LAB.0000092233.50246.F7
  18. Lemberger T, Desvergne B, Wahli W. Peroxisome proliferatoractivated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol. 1996;12:335-63. https://doi.org/10.1146/annurev.cellbio.12.1.335
  19. Jow L, Mukherjee R. The human peroxisome proliferator-activated receptor (PPAR) subtype NUC1 represses the activation of hPPAR alpha and thyroid hormone receptors. J Biol Chem. 1995;270:3836-40. https://doi.org/10.1074/jbc.270.8.3836
  20. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259-64. https://doi.org/10.1016/S1471-4914(01)02016-0
  21. Haydon RC, Zhou L, Feng T, Breyer B, et al. Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma. Clin Cancer Res. 2002;8:1288-94.
  22. Haydon RC, Luu HH, He TC. Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Clin Orthop Relat Res. 2007;454:237-46. https://doi.org/10.1097/BLO.0b013e31802b683c