Bayesian estimation in the generalized half logistic distribution under progressively type-II censoring

  • Kim, Yong-Ku (Department of Statistics, Yeungnam University) ;
  • Kang, Suk-Bok (Department of Statistics, Yeungnam University) ;
  • Se, Jung-In (Department of Statistics, Yeungnam University)
  • Received : 2011.08.01
  • Accepted : 2011.09.02
  • Published : 2011.10.01

Abstract

The half logistic distribution has been used intensively in reliability and survival analysis especially when the data is censored. In this paper, we provide Bayesian estimation of the shape parameter and reliability function in the generalized half logistic distribution based on progressively Type-II censored data under various loss functions. We here consider conjugate prior and noninformative prior and corresponding posterior distributions are obtained. As an illustration, we examine the validity of our estimation using real data and simulated data.

Keywords

References

  1. Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressively Type-II censoring. Journal of Statistical Computation and Simulation, 74, 25-45. https://doi.org/10.1080/0094965031000105881
  2. Balakrishnan, N., Kannan, N., Lin, C. T. and Ng, H. K. T. (2003). Point and interval estimation for Gaussian distribution based on progressively Type-II censored samples. IEEE Transactions on Reliability, 52, 90-95. https://doi.org/10.1109/TR.2002.805786
  3. Balakrishnan, N. and Wong K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half logistic distribution with Type-II right-censoring. IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
  4. Balakrishnan, N. and Puthenpura S. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution. Journal of Statistical Computation and Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
  5. Calabria, R. and Pulcini, G (1994). An engineering approach to Bayes estimation for the Weibull distribution. Microelectronics and Reliability, 34, 789-802. https://doi.org/10.1016/0026-2714(94)90004-3
  6. Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressive Type-II censoring. Communications of the Korean Statistical Society, 15, 815-823. https://doi.org/10.5351/CKSS.2008.15.6.815
  7. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples. Communications of the Korean Statistical Society, 16, 1055-1066. https://doi.org/10.5351/CKSS.2009.16.6.1055
  8. Kang, S. B. and Park, Y. K. (2005). Estimation for the half-logistic distribution based on multiply Type-II censored samples. Journal of the Korean Data & Information Science Society, 16, 145-156.
  9. Kim, Y., Kang, S. B. and Seo, J. I. (2011). Bayesian estimations on the exponentiated half triangle distribution under Type-I hybrid censoring. Journal of the Korean Data & Information Science Society, 22, 565-574.
  10. Nelson, W. B (1982). Applied life data analysis, John Willey & Sons, New York.
  11. Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressively Type-II censored data. The Korean Communications in Statistics, 14, 329{344.
  12. Varian, H. R. (1975). A Bayesian approach to real estate assessment. In Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, edited by S. E. Feinberg and A. Zellner, North Holland, Amsterdam, 195-208.
  13. Viverous, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data. Technometrics, 36, 84-91. https://doi.org/10.1080/00401706.1994.10485403
  14. Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function. Journal of American Statistical Association, 81, 446-451. https://doi.org/10.1080/01621459.1986.10478289