DOI QR코드

DOI QR Code

A Study on the Measurements of Optical Parameters in Photosensitizer by Light Scattering

농도가 진한 매질에서 광증감제에 의한 광학적 파라미터측정에 관한 연구

  • Kim, Ki-Jun (Dept. of Chemical Engineering, Daejin University) ;
  • Lee, Jou-Joub (Dept. of Chemical Engineering, Daejin University)
  • 김기준 (대진대학교 공과대학 화학공학과) ;
  • 이주엽 (대진대학교 공과대학 화학공학과)
  • Received : 2011.02.20
  • Accepted : 2011.03.15
  • Published : 2011.03.30

Abstract

The study of wave propagation and scattering in biological media has become increasingly important in recent years. The propagation of light within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is measured. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements. The result was compromised with transport of intensities though a random distribution of scatters.

Keywords

References

  1. K. J. Kim and K. C. Sung, A Study on Spectra of Laser Induced Fluorscence in Phantom, J. of Korean Oil Chemist' Soc,, 16(4), 329 (1999).
  2. K. J. Kim and K. C. Sung, Monte Carlo Simulation on Light Distribution in Turbid Material, J. of Korean Oil Chemists Soc., 15(4), 11 (1998).
  3. K. J. Kim and K. C. Sung, Studies on Measurements of Optical Parameters in Turbid Material by Light Scattering, J. of Korean Oil Chemists Soc., 12(2), 151 (1995).
  4. S. L. Jacques and S. A. Prahl, Modeling Octical and Thermal Distribution in Tissue During Laser Irradiation, Laser in Surgery and Medicine 6, 494 (1987). https://doi.org/10.1002/lsm.1900060604
  5. B. C. Wilson, Y. D. Park, Y. Hefetz, M. S. Patterson, S. J. Madsen and S. L. Jacques, The Potential of Timeresolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties, in Thermal and Optical Interactions with Biological and Related Composite Materials, M. J. Berry and G. M. Harpole, eds., Proc. S. P. I. E., p. 97, (1989).
  6. S. L. Jacques, C. A. Alter, and S. A. Prahl, Angular Dependence of HeNe Laser Light Scattering by Human Dermis, Laser in the Life Science, 1(4), 309 (1987).
  7. R. R. Alfano, G. C. Tang, A. Pradhan, W. Ran, S. J. Daniel, ,and E Opher, Fluorescence Spectro from Cancerone and Normal Human Breast and Lung Tissues, IEEE J. Quan. Elec. QE, 23(10), 1806 (1987). https://doi.org/10.1109/JQE.1987.1073234
  8. R. W. Henderson, G. S. Christie, P. S, Clenzy, and J. Lineham, Haematoporphyrin Diacetate: A Probe to Distinguish Malignant from Normal Tissue by Selective Fluorescence, Br. J. Exp. Path. 61, 345 (1980).
  9. L. O. Poicard, C. J. Gomer, and A. E. Profio, Laser-Induced Hyperthermia of Ocular Tumors, Appl. Opt., 28(12), 2318 (1989). https://doi.org/10.1364/AO.28.002318