References
- S. Li, "Comparative analysis of backpropagation and extended Kalman filter in pattern and batch forms for training neural netwotks," Int. Joint Conf. on Neural Networks, Washington, DC. pp.144-149,2001.
- C. M. Takenga,K. R. Anne,K. Kyamakya,and J. C. Chedjou, "Comparison of gradient descent method, Kalman filtering and decoupled Kalman in training neural networks used for fingerprintbased positioning," Proc. of the IEEE Vehicular Technology Conf., pp. 4146- 4150,2004.
- K-W. Wong,C.-S. Leung,and S.-J. Chang,''use pf periodic and monotonic activation functions in multilayer feedforward neural networks trained by extended Kalman filter algorithm;' IEEE Proc.-Vis. Image signal Process,vol. 149,no. 4,pp. 217-224,2002. https://doi.org/10.1049/ip-vis:20020515
- S. J. Julier and J. K Uhlmann, ''Unscented filtering and nonlinear estimation," Proc. of the IEEE,vol. 92,no. 3,pp. 401-422, 2004. https://doi.org/10.1109/JPROC.2003.823141
- B. Todorovic,M. Stankovic,and C. Moraga,"On-line learning in recurrent neural netwotks using nonlinear Kalman filters," Proc. of the IEEE Int. Symposium on signal Processing & Information technology,pp. 802-805, 2003.
- R. Zhan and J. Wan, ''Neural network-aided adaptive unscented Kalman filter for nonlinear state estimation," IEEE Signal Processing Letters,vol. 13,no. 7,pp. 445-448, 2006. https://doi.org/10.1109/LSP.2006.871854
- M. Choi, R. Sakthivel,and W. K. Chung, ''Neural network-aided extended Kalman filter for SLAM problem," IEEE Int. Conf. on Robotics & Automation, Rolla, Italy, pp.1686-1690, 2007.
- K. A. Kramer and S. C. Stubberud, "Tracking of multiple target types with a single neural extended Kalman filter," Int. J of Intelligent Systems, vol.25,pp. 440-459, 2010.
- W. Yu and J. de J. Rubio, ''Recurrent neural networks training with stable risk-seusitive Kalman filter algorithm," Proc. of Int. Joint Conf. on Neural Networks, Montreal, Canada,pp. 700-705, 2005.
- J. Choi,A. C. Lima,and S. Haykin, "Kalman filter-trained recurrent neural equalizers for time-varying channels," IEEE Trans. on Communications, vol. 53, no.3,pp. 472-480, 2005. https://doi.org/10.1109/TCOMM.2005.843416
- P. H. G. Coelho and L. B. Neto, "Complex RTRL neural netwotks fast Kalman training," Int Conf. in Intelligent Systems Design & Applications, pp.573-577, 2007.
- D. T. Mirikitani and N. Nikolaev, "Dynamic modeling with ensemble Kalman filter trained recurrent neural networks," Int. Conf. on Machine Learning & Applications, pp.843-848, 2008.
- X. Wang and Y. Huang, "Convergence study in extended Kalman filter-based training of recurrent neural networks," IEEE Trans. on Neural Networks, vol.22, no.4,pp. 588-600, 2011. https://doi.org/10.1109/TNN.2011.2109737
- J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications and Control, New Jersey, Prentice Hall,1995.
- A. S. Poznyak, E. N. Sancbez,and W. Yu, Differential Neural Networks for Robust Nonlinear Control, New Jersey, World Science, 2001.
- 조현철, 이진우, 이영진, 이권순, "칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링," 제어로봇시스템학회 논문지, 제14권 제8호, pp.779-784, 2008년.
- S. Haykin, Neural Networks and Leaming Machines, New Jersey, Prentice Hall, 2009.