DOI QR코드

DOI QR Code

A Simplified 3D-Location Scheme for Wireless Sensor Networks

무선 센서 네트워크를 위한 저복잡도 3차원 무선측위 기법

  • 콴트렁 (숭실대학교 정보통신전자공학부 통신 및 정보처리 연구실) ;
  • 김광열 (숭실대학교 정보통신전자공학부 통신 및 정보처리 연구실) ;
  • 신요안 (숭실대학교 정보통신전자공학부 통신 및 정보처리 연구실)
  • Received : 2011.08.05
  • Accepted : 2011.09.06
  • Published : 2011.09.30

Abstract

WSNs (Wireless Sensor Networks) are becoming more widely used in various fields, and improving localization performance is a crucial and essential issue for sensor network applications. In this paper, we propose a low-complexity localization mechanism for WSNs that operates in 3D (Three-Dimensional) space. The basic idea is to use aerial vehicles or flying objects that are deliberately equipped with the anchor nodes. These anchor nodes periodically broadcast beacon signals containing their current locations, and the unknown nodes receive these signals as soon as they enter the communication range of the anchors. We estimate the locations of the unknown nodes based on the proposed scheme that transforms the 3D problem into 2D computations to reduce the complexity of 3D localization. Simulated results show that our approach is an effective scheme for 3D self-positioning in WSNs.

무선 센서 네트워크는 다양한 분야에서 광범위하게 사용되고 있으며, 무선측위는 센서 네트워크의 응용을 위한 필수적이고 핵심적인 기술로 집중을 받고 있다. 하지만 무선 센서 네트워크의 환경이 3차원으로 이루어져 있는 반면에 대부분의 무선측위 기법은 2차원으로 구현되어 있어 새로운 기법이 요구되고 있는 상황이다. 이에 본 논문에서는 3차원 공간에서 동작하는 무선 센서 네트워크를 위한 저복잡도 무선측위 메커니즘을 제안한다. 기본 개념은 2개의 앵커 노드를 한쌍으로 탑재한 비행체를 이용하는 것으로, 이 앵커 노드들은 그들의 현재 위치를 담고있는 비컨 신호를 주기적으로 전파하며 임의 노드들은 앵커 노드들의 통신 범위에 들어가자마자 이 비컨 신호를 수신한다. 제안된 기법은 3차원 무선측위의 복잡도를 줄이기 위하여 3차원 문제를 2차원의 계산으로 변형하여 임의 노드의 위치를 추정한다. 모의실험 결과를 통해 무선 센서 네트워크에서 제안된 기법이 3차원 무선측위에 효과적임을 확인하였다.

Keywords

References

  1. H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks, Ch. 2, John Wiley & Sons, 2005.
  2. C. H. Ou and K. F. Ssu, "Sensor position determination with flying anchors in threedimensional wireless sensor networks," IEEE Trans. Mobile Computing, Vol.7, No.9, pp. 1084-1097, Sept. 2008. https://doi.org/10.1109/TMC.2008.39
  3. L. Zhang, X. Zhou, and Q. Cheng, "Landscape- 3D: A robust localization scheme for sensor networks over complex 3D terrains," Proc. IEEE LCN 2006, pp. 239-246, Tampa, USA, Nov. 2006.
  4. V. Yadav, M. K. Mishra, A.K. Sngh, and M. M. Gore, "Localization scheme for three dimensional wireless sensor networks using GPS enabled mobile sensor nodes," Int'l Jour. Next-Generation Networks, Vol.1, No.1, pp. 60-72, Dec. 2009.
  5. N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less low cost outdoor localization for very small devices," IEEE Personal Commun., Vol.7, No.5, pp.28-34, Oct. 2000. https://doi.org/10.1109/98.878533
  6. N. Bulusu, J. Heidemann, and D. Estrin, "Adaptive beacon placement," Proc. ICDCS 2001, Phoenix, USA, Apr. 2001.
  7. D. Niculescu and B. Nath, "DV based positioning in ad hoc networks," ACM Jour. Telecommun. Syst., Vol.22, pp. 267-280, 2003. https://doi.org/10.1023/A:1023403323460
  8. C. Savarese, J. Rabay, and K. Langendoen, "Robust positioning algorithms for distributed ad-hoc wireless sensor networks," Proc. USENIX ATC 2002, pp. 317-327, Monterey, USA, June 2002.
  9. T. He, C. Huang, B. Lum, J. Stankovic, and T. Adelzaher, "Range-free localization schemes for large scale sensor networks," Proc. ACM MobiCom 2003, pp.81-95, San Diego, USA, Sept. 2003.
  10. I. Guvenc, C. C. Chong, and F. Watanabe, "Joint TOA estimation and localization technique for UWB sensor network applications," Proc. IEEE VETECS 2007, pp.1574-1578, Dublin, Ireland, Apr. 2007.
  11. A. Savvides, C. C. Han, and M.B. Srivastava, "Dynamic fine-grained localization in ad-hoc networks of sensors," Proc. ACM MobiCom 2001, pp.166-179, Rome, Italy, July 2001.
  12. P. Bahl and V. N. Padmanabhan, "Radar: An in-building RF-based user location and tracking system," Proc. IEEE INFOCOM 2000, Vol.2, pp. 775-784, Tel-Aviv, Israel, Mar. 2000.
  13. D. Niculescu and B. Nath, "Ad-hoc positioning systems (APS) using AoA," Proc. IEEE INFOCOM 2003, Vol.3, pp.1734-1743, San Francisco, USA, Apr. 2003.
  14. J. Jin, Y. Wang, C. Tian, W. Liu, and Y. Mo, "Localization and synchronization for 3D underwater acoustic sensor networks," Proc. UIC 2007, pp.622-631, Hong Kong, China, July 2007.
  15. Z. Zhong, D.-Y. Luo, S.-Q. Liu, X.-P. Fan, and Z.-H Qu, "An adaptive localization approach for wireless sensor networks based on Gauss- Markov mobility model," Acta Automatica Sinica, Vol.36, No.11, pp.1557-1568, Nov. 2010. https://doi.org/10.3724/SP.J.1004.2010.01557
  16. C. Bettstetter, H. Hartenstein, and X. Perez-Costa, "Stochastic properties of the random waypoint mobility model," Wireless Networks, Vol.10, No.5, pp.555-567, Sept. 2004. https://doi.org/10.1023/B:WINE.0000036458.88990.e5
  17. C. Bettstetter and C. Wagner, "The spatial node distribution of the random waypoint mobility model," Proc. German WMAN 2002, pp.41-58, Ulm, Germany, Mar. 2002.
  18. C. Y. Shih and P. J. Marron, "COLA: Complexity-reduced trilateration approach for 3D localization in wireless sensor networks," Proc. IEEE SensorComm 2010, pp.24-32, Venice, Italy, July 2010.
  19. N. Ababneh, "Radio irregularity problem in wireless sensor networks: New experimental results," Proc. IEEE SARNOFF 2009, pp. 563-567, Princeton, USA, Mar. 2009.