DOI QR코드

DOI QR Code

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion

이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석

  • Lee, Jong-Hyeok (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Byung-Gab (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Ki-Hun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Bang, Dae-Suk (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jhee, Kwang-Hwan (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Sin, Min-Cheol (Korea TR Co. Ltd.)
  • 이종혁 (금오공과대학교 고분자공학) ;
  • 이병갑 (금오공과대학교 고분자공학) ;
  • 박기훈 (금오공과대학교 고분자공학) ;
  • 방대석 (금오공과대학교 고분자공학) ;
  • 지광환 (금오공과대학교 응용화학과) ;
  • 신민철 (한국티알(주))
  • Received : 2011.07.22
  • Accepted : 2011.08.10
  • Published : 2011.09.30

Abstract

Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

Wood Polymer Composite(WPC)는 우수한 물성 및 가공성과 더불어 자원재활용 및 벌목규제 대응 등의 환경적인 측면에서 각광을 받고 있는 재료이다. 본 연구에서는 이축스크류식 치합형 압출기를 이용하여 상용화 WPC를 제조하였다. WPC의 물성에 영향을 미치는 세 가지 주요 실험 변수 즉 목분의 함량, coupling agent의 함량 그리고 목분의 전처리 영향을 자세히 관찰하였다. 목분의 함량에 따른 WPC의 물성변화는 목분함량이 증가함에 따라 인장강도 와 열안정성이 감소하고, 수분흡수성이 증가하는 것이 관찰되었다. PP-g-MA 첨가 시 기계적 물성은 향상되고, 수분흡수성이 감소하는 것이 관찰되었다. 목분을 전처리하여 제조한 시편에서는 가장 높은 인장강도의 향상을 나타냈지만, 셀룰로스의 결정구조 변화로 수분흡수성이 증가하는 것이 확인되었다.

Keywords

References

  1. 폐목재 관리체계 개선 및 재활용 활성화 방안 연구, 환경부, 2007. 11.
  2. L. Danyadi, J. Moczo, and B. Pukanszky, "Effect of various surface modifications of wood flour on the properties of PP-wood composites", Composites: Part A, 41, 199 (2008).
  3. S.M.B. Nachtigall, G.S. Cerveira, and S.M.L. Rosa, "New polymeric- coupling agent for polypropylene/wood-flour composites", Polym. Testing, 26, 619 (2007). https://doi.org/10.1016/j.polymertesting.2007.03.007
  4. O. Faruk and L.M. Matuana, "Nanoclay reinforced HDPE as a matrix for wood-plastic composites", Compos. Sci. Technol., 68, 2073 (2008) https://doi.org/10.1016/j.compscitech.2008.03.004
  5. Alireza Ashori and Amir Nourbakhsh, "Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites", Composites: Part B, 41, 578 (2010). https://doi.org/10.1016/j.compositesb.2010.05.004
  6. K.B. Adhikary, S.Pang, and M.P. Staiger, "Dimensional stability and mechanical behaviour of wood plastic composites based on recycled and virgin high density polyethylene (HDPE)", Composites: Part B, 39, 807 (2008). https://doi.org/10.1016/j.compositesb.2007.10.005
  7. A. Ashori and A. Nourbakhsh, "Characteristics of wood-.fiber plastic composites made of recycled materials", Waste Management, 29, 1291 (2009). https://doi.org/10.1016/j.wasman.2008.09.012
  8. J.C. Caraschi and A.L. Leão, "Wood flour as reinforcement of polypropylene", Mater. Res., 5, 405 (2002). https://doi.org/10.1590/S1516-14392002000400003
  9. L.M. Matuana, J.J. Balatinecz, R.N.S. Sodhi, and C.B. Park, "Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy", Wood Sci. Technol., 35, 191 (2001). https://doi.org/10.1007/s002260100097
  10. J.G. Gwon, S.Y. Lee, S.J Chun, G.H. Doh, and J.H. Kim, "Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites", Composites:Part A, 41, 1491 (2010). https://doi.org/10.1016/j.compositesa.2010.06.011
  11. A.N. Shebania, A.J. van Reenena, and M. Meinckenb, "The effect of wood extractives on the thermal stability of different wood LLDPE composites", Thermochimica Acta, 481, 52 (2009). https://doi.org/10.1016/j.tca.2008.10.008
  12. M.J. Johna and S. Thomas, "Biofibres and biocomposites", Carbohydrate Polym., 7, 343 (2008).
  13. J.G. Gwon, S.Y. Lee, G.H. Doh, and J.H. Kim, "Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites", J. Polym. Sci., 116, 3212 (2010).