DOI QR코드

DOI QR Code

천연섬유/천연고무 복합재료의 특성에 미치는 Kenaf 섬유함량의 영향

Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites

  • Cho, Yi-Seok (Semyung Industrial Co. Ltd.) ;
  • Cho, Dong-Hwan (Polymer/Bio-Composites Research Lab, Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2011.07.21
  • 심사 : 2011.08.08
  • 발행 : 2011.09.30

초록

셀룰로오스계 천연섬유인 kenaf를 천연고무와 함께 균일하게 배합한 후 압축성형 방법을 사용하여 천연섬유/천연고무 복합재료를 제조하였으며, 이들의 가황거동, 경도, 인장특성, 인열강도 및 정적, 동적 특성에 미치는 kenaf 섬유함량의 영향을 조사하였다. 복합재료를 구성하는 천연섬유의 함량은 천연고무 및 배합제 대비 0, 5, 10, 15, 20 phr이었다. 실험결과 천연고무의 여러 가지 특성이 kenaf 섬유의 함량에 의존한다는 것을 나타내었다. Kenaf 섬유함량이 증가함에 따라 천연고무의 가황에 요구되는 토크는 높아진 반면 가황시간은 감소되었다. Kenaf/천연고무 복합재료의 경도, 인장탄성률과 인열강도는 섬유함량이 증가할수록 점차적으로 증가한 반면, 인장강도와 파단신장률 은 감소하는 경향을 보여주었다. 또한 kenaf 섬유함량이 증가함에 따라 천연고무의 정적 특성보다는 동적 특성의 변화가 더욱 크게 나타났다. 고무에 가해지는 에너지의 감쇄 또는 흡수와 밀접한 관계가 있는 손실인자도 섬유함량에 비례하여 증가하였다.

Natural fiber/natural rubber composites were fabricated by uniformly compounding natural rubber and cellulose- based natural fiber kenaf and then by compression molding. The effect of kenaf fiber content on their vulcanization behavior, hardness, tensile properties, tear strength and static and dynamic properties was investigated. The contents of kenaf fiber in the composites were 0, 5, 10, 15, and 20 phr, compared to natural rubber and additives. The result indicated that various properties of natural rubber depended on the kenaf fiber content. With increasing kenaf fiber content, the torque for vulcanization of natural rubber was increased whereas the vulcanization time was reduced as well. The hardness, tensile modulus and tear strength of kenaf/natural rubber composites were gradually decreased with the fiber content whereas the tensile strength and elongation at break were decreased. Also, with increasing the kenaf fiber content the dynamic property of natural rubber was changed more greatly than the static property. The loss factor, which is closely related with the damping or absorption of the energy given to natural rubber, was proportionally increased with the fiber content.

키워드

참고문헌

  1. D. Cho, S.G. Lee, W.H. Park, and S.O. Han, "Eco-friendly Biocomposite Material Using Biofibers", Polym. Sci. Tech., 13, 460 (2002).
  2. D. Cho and H.-J. Kim, "Naturally Cyclable Biocomposites", Elast. Compos., 44, 13 (2009).
  3. J. Müssig (Ed.), "Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications", John Wiley & Sons, Chippenham (2010).
  4. J. Gassan and A. Bledzki, "Effect of Cyclic Moisture Absorption Desorption on the Mechanical Properties of Silanized Jute-Epoxy Composites", Polym. Compos., 20, 62 (1999).
  5. S.S. Tripathy, G. Levita, and D. Landro, "Interfacial Adhesion in Jute-Polyolefin Composites", Compos. Sci. Technol., 22, 815 (2001).
  6. D. Cho, H.S. Lee, S.O. Han, and L.T. Drzal, "Effects of E-Beam Treatment on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites", Adv. Compos. Mater., 16, 315 (2007). https://doi.org/10.1163/156855107782325159
  7. D. Cho, H.S. Lee, and S.O. Han, "Effect of Fiber Surface Modification on the Interfacial and Mechanical Properties of Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites", Compos. Interf., 16, 711 (2009). https://doi.org/10.1163/092764409X12477427307537
  8. S.M. Lee, D. Cho, W.H. Park, S.G. Lee, S.O. Han, and L.T. Drzal, "Novel Silk/Poly(butylene succinate) Biocomposites: The Effect of Short Fiber Content on Their Mechanical and Thermal Properties", Compos. Sci. Technol., 65, 647 (2005) https://doi.org/10.1016/j.compscitech.2004.09.023
  9. J.M. Seo, D. Cho, W.H. Park, S.O. Han, T.W. Hwang, C.H. Choi, and S.J. Jung, "Fiber Surface Treatments for Improvement of the Interfacial Adhesion and Flexural and Thermal Properties of Jute/Poly(lactic acid) Biocomposites", J. Biobased Mater. Bioenerg.", 1, 331 (2007). https://doi.org/10.1166/jbmb.2007.007
  10. L. Liu, J. Yu, L. Cheng, and X. Yang, "Biodegradability of Poly(butylene succinate)(PBS) Composite Reinforced with Jute Fibre", Polym. Degrad. Stabil., 94, 90 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.013
  11. V.G. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, "Dynamic Mechanical Behavior of Short Coir Fiber Reinforced Natural Rubber Composites", Composites Part A: Appl. Sci. Manufac., 36, 1499 (2005). https://doi.org/10.1016/j.compositesa.2005.03.004
  12. Y. Ruksakulpiwat, J. Sridee, N. Suppakarn, and W. Sutapun, "Improvement of Impact Property of Natural Fiber-Polypropylene Composite by Using Natural Rubber and EPDM Rubber", Composites Part B: Eng., 40, 619 (2009) https://doi.org/10.1016/j.compositesb.2009.04.006
  13. A. N. Gent (Ed.), "Engineering with Rubber", Hanser Publishers, Munich (1992) Chapter 2.
  14. M. Morton (Ed.), "Rubber Technology", 3rd Ed., Van Nostrand Rhinhold, New York (1987) Chapter 3.
  15. J. A. Brydson, "Rubbery Materials and Their Compounds", Elsevier Applied Science, London (1988) Chapter 4.
  16. H. Ismail, M.R. Edyham, and B. Wirjosentono, "Bamboo Fibre Filled Natural Rubber Composites: the Effects of Filler Loading and Bonding Agent", Polym. Test., 21, 139 (2002). https://doi.org/10.1016/S0142-9418(01)00060-5
  17. M. Jacob, S. Thomas, K. T. Varughese, "Mechanical Properties of Sisal/Oil Palm Hybrid Fiber Reinforced Natural Rubber Composites", Compos. Sci. Technol., Volume 64, Issues 7-8, June 2004, Pages 955-965(2004). https://doi.org/10.1016/S0266-3538(03)00261-6
  18. H. Anuar, A. Zuraida, "Improvement in Mechanical Properties of Reinforced Thermoplastic Elastomer Composite with Kenaf Bast Fibre", Composites Part B: Eng., 42, 462 (2011).
  19. Y.H. Han, S.O. Han, D. Cho, and H.-I. Kim, "Kenaf/Polypropylene Biocomposites: Effects of Electron Beam Irradiation and Alkali Treatment on Kenaf Natural Fibers", Compos. Interf., 14, 559 (2007). https://doi.org/10.1163/156855407781291272
  20. J. M. Seo, D. Cho, and W.H. Park, "Alkali Treatment Effect of Kenaf Fibers on the Characteristics of Kenaf/PLA Biocomposites", J. Adhes. Interf., 9, 1 (2008).
  21. M.S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, "Effect of Fiber Surface Treatments on the Properties of Laminated Biocomposites from Poly(lactic acid)(PLA) and Kenaf Fibers", Compos. Sci. Tech., 68, 424 (2008). https://doi.org/10.1016/j.compscitech.2007.06.022
  22. U.S. Ishiaku, X.Y. Yang, Y.W. Leong, H. Hamada, T. Semba, and K. Kitagawa, "Effects of Fiber Content and Alkali Treatment on the Mechanical and Morphological Properties of Poly(lactic acid)/Poly(caprolactone) Blend Jute Fiber-Filled Biodegradable Composites", J. Biobased Mater. Bioenerg., 1, 78 (2007).
  23. A.K. Mohanty, M. Misra, and L.T. Drzal, "Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposites: An Overview", Compos. Interf., 8, 313 (2001). https://doi.org/10.1163/156855401753255422
  24. Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, and C. Mai, "Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review", Composites: Part A, 41, 806 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005
  25. S.G. Ji, W.H. Park, D. Cho, and B.C. Lee, "Electron Beam Effect on the Tensile Properties and Topology of Jute Fibers and the Interfacial Strength of Jute-PLA Green Composites", Macromol. Res., 18, 919 (2010). https://doi.org/10.1007/s13233-010-0916-z
  26. V.G. Geethamma, R. Joseph, and S. Thomas, "Short Coir Fiber-Reinforced Natural Rubber Composites: Effects of Fiber Length, Orientation, and Alkali Treatment", J. Appl. Polym. Sci., 55, 583 (1995). https://doi.org/10.1002/app.1995.070550405
  27. G. Mehta, L.T. Drzal, A.K. Mohanty, and M. Misra, "Effect of Fiber Surface Treatment on the Properties of Biocomposites from Nonwoven Industrial Hemp Fiber Mats and Unsaturated Polyester Resin", J. Appl. Polym. Sci., 99, 1055 (2006). https://doi.org/10.1002/app.22620