INTERNATIONAL JOURNAL OF KIMICS. VOL. 9. NO. 4, AUGUST 2011

471

Approximation Algorithms for Scheduling Parallel
Jobs with More Machines

Jae-Hoon Kim, Member, KIMICS

Abstract— In parallel job scheduling, each job can be
executed simultaneously on multiple machines at a time.
Thus in the input instance, a job J; requires the
number m; of machines on which it shall be processed.
The algorithm should determine not only the execution
order of jobs but also the machines on which the jobs
are executed.

In this paper, when the jobs have deadlines, the
problem is to maximize the total work of jobs which is
completed by their deadlines. The problem is known to
be strongly NP-hard [5] and we investigate the
approximation algorithms for the problem.

We consider a model in which the algorithm can have
more machines than the adversary. With this advantage,
the problem is how good solution the algorithm can
produce against the optimal algorithm.

Index Terms— Parallel job scheduling, approximation
algorithms, deadlines, adversary.

L. INTRODUCTION

IN the classical scheduling, a job is executed by only
one machine at a time. Due to the rapid development of
parallel computer systems, new approaches are required
to model scheduling problems on parallel architecture.
See [1], [2], [3] for an overview about scheduling parallel
jobs.

We are given m identical machines and n

independent parallel jobs to be scheduled on the machines.

Each job J; has a processing time p;, a deadline d; and
a number of machines needed for execution m; ,
1 < m; < m. A machine can process at most one job at a
time. During p; time units from a starting time, exactly
m; machines are required to run the job J;.

We consider non-preemptive model, where once a job
is scheduled, it may not be preempted and continued at a
later time. The jobs should be completed before or at their
deadlines, if not, it cannot contribute to the objective
function of the problem. The goal is to maximize the sum
of works, i.e., p; X m;, of the jobs J; completed before
or at their deadlines d;, that is, Y,;p; - m; - U;, where

Manuscript received June 16, 2011; revised July 13, 2011; accepted
July 29, 2011.

Jae-Hoon Kim is with the Division of Computer Engineering, Pusan
University of Foreign Studies, Busan, 604-168, Korea (Email:
jhoon@pufs.ac.kr)

=1, if J; is completed before or at time d;, and
= 0 otherwise.

This problem is denoted as P |m;| X;p;-m; - U; in
the well-known notation of the scheduling literature. It
was shown in [4] that the problem is strongly NP-hard.
Thus, we will investigate the approximation algorithms
for the problem. An p-approximation algorithm for a
maximization problem is a polynomial-time algorithm
that constructs for any instance a solution of value at least

U,
U;

% times the optimal value. Designing a good

approximation algorithm may be viewed as minimizing
the performance guarantee p against the adversary trying
to give the worst-case instances.

In this paper, we consider a model in which the
algorithm may have more machines than the adversary,
called resource augmentation. An algorithm is said to be a
o -machine p -approximation algorithbm if using the
machines ¢ times more than the adversary, its solution is

at least % times the optimal value for any instance. In this

paper, we shall provide a 2-machine 2-approximation
algorithm.

I1I. RELATED WORK

For the parallel job scheduling, most previous
research is concentrated on minimizing the makespan
Cmax = Mmax;C; and the sum of completion times
%G

In the makespan minimization, that is,
P\ m; | Cirax, the maximum completion time of jobs is
minimized. It is strongly NP-hard [5] and unless P =
NP, there is no approximation algorithm with a
performance ratio better than 1.5 [6]. The best known
algorithm for this problem is the list-based algorithm
with approximation ratio 2 given in [7]. As variants of
the problem, for the case that the number of available
machines is a constant, that is, Pm | m; | Cyqy, there
is a polynomial time approximation scheme (PTAS)
(81, [9]-

Also this problem is closely related to the strip-
packing problem, where rectangles should be packed
into a strip with unit width and unbounded height so
as to minimize the total height of the packing. In
contrast to the model considered in this paper,
machines assigned to a job need to be contiguous in a
solution to the strip-packing problem. Therefore a

472 Jae-Hoon Kim: APPROXIMATION ALGORITHMS FOR SCHEDULING PARALLEL JOBS WITH MORE MACHINES

solution to the strip-packing problem is also the
solution to our problem, but the converse is not valid.
For the strip-packing, the currently best known result
is the 2-approximation algorithm [10], [11].

For minimizing the sum of completion times, that is,
P|m;| ¥;C;, there is an 8-approximation algorithm
[12]. Also, the authors gave an 10.45-approximation
algorithm for the problem P |m;| X; w;C;.

For the problem of scheduling the parallel jobs with
deadlines, there is few known work. To our
knowledge, [13] is only the known result. In [13], the
author provided a (5 + £)-approximation algorithm. In
this paper, we will develop this work applying the
resource augmentation analysis.

III. ALGORITHMS

There are M machines and a set J of jobs J; with a
processing time p;, a number of required machines m,,
and a deadline d;. We will denote each of the machines
as M;, i=1,.. M.

A schedule S for J is a subset of J, where each job
Ji €S is associated with a starting time s;, s; + p; < d;,
and a subset g; of machines with | g; | = m;. It is said
that a job J; €S is accepted in S, while a job J; € S is
rejected in S. We will denote as ||S]|, the sum of the
works of jobs that are accepted in S, that is, ||S|| =
Yjes Pi My

We will first introduce the heuristic algorithm
EDF(Earliest Deadline First) . To describe EDF
algorithm, we define idle and free machines. For any
schedule S, a machine m is said to be idle at time t if
m is executing no job at time t in S. Also, a machine
m is said to be free at time ¢t if for any time t' >t, m
is idle at time ¢’ in S.

In EDF, the jobs are scheduled in.non-decreasing order
of deadlines. When a job J; is considered, EDF finds
the earliest time t, t <d; —p;, when m; or more
machines are free. If it exists, J; is scheduled at the time
t on those machines. Otherwise, it is rejected. In this
paper, EDF is used in the next approximation algorithm
as a sub-procedure.

Now, we will describe an approximation algorithm A
with more machines than the optimal algorithm, say, M
additional machines. In A, the jobs J; €] are classified
into two groups B and T. Each job J; in B is called a
big job and satisfies p; > 2d;, while J; in T is called a
tiny job and satisfies p; < 1d;.

In A, the jobs are scheduled separately from the
groups B and T. For the jobs in B, we consider them in
the non-increasing order of their deadlines. Specifically,
we assume that d; > d, =+ = dg, for the jobs
Ji € B with their deadlines d;, { =1, ..., [B|. The job J;
is scheduled on the first m, machines, say, M;, ..., M,, .
The job J, is scheduled on the next m, machines.

Continuously, there is a job Jx such that Yjccx-1m; <
2M and Y << m; > 2M, if it exists. Otherwise, the job
Jip) satisfies X1<i<jpm; < 2ZM. For the former case, the
jobs J;, i =1,..,K — 1, are scheduled at time 0 and for
the latter case, J;, i = 1,...,|B], are scheduled at time 0.

And then the jobs in T are scheduled in EDF over
the jobs already scheduled from B. Note that EDF is
well-defined under the situation where the jobs in B are
already scheduled on the machines.

This algorithm was provided in [13] and the authors
proved that it is (5 + €)-approximation algorithm. In this
paper, we will analyze the algorithm with additional
machines.

IV. ANALYSIS

In this section, we shall show that the algorithm A is
a 2-machine 2-approximation algorithm.

First, we consider the case that A accepts all the jobs
in T. Then it is sufficient to consider only the jobs of B.
If A accepts all the jobs of B, then we get 1-
approximation algorithm. Otherwise, there is a job of B
rejected by A. Then from the definition of <A, there isa
rejected job Ji such that Y, m; £2M and
Yi<ickM; > 2M. Since myg < M, the machines more
than or equal to M should execute the scheduled jobs
Jis ...y Jx—1. Also, since the jobs J;, i=1,..,K—1,
are big jobs, that is, p; > 1d;, the machines execute the
jobs during at least half of the intervals [0,d;],
i=1,..,K—1. But in the optimal algorithm, the M
machines may execute the big jobs during at most the
intervals [0,d;], because in A, the big jobs are sorted
in non-increasing order. Therefore A is a 2-
approximation algorithm.

From now on, we assume that there is a job of T
rejected by A. Let £ be the deadline of the job of T
which is rejected by A in the last. Then ¢ is well-
defined. Note that the jobs of T is scheduled by EDF
in A. Then, the jobs of T with deadlines larger than
£ is called the last jobs. Denote the set of the last jobs
by L.

For i =1,...,2M, we define a positive integer k; to
be the deadline of the big job which is scheduled on
machine M; in A, if it exits. Otherwise, k; = 0. Thus,
we define a height h; of machine M; to be the
maximum of ¢ and k; for each i. Figure 1 represents
the heights h; of machines. Let R be the region bounded
by the heights. Note that the area of R is equal to

2M h;. Then we shall obtain an upper bound of the
optimal algorithm in the following lemma.

INTERNATIONAL JOURNAL OF KIMICS. VOL. 9. NO. 4, AUGUST 2011 473

M

d;

Fig. 1. The heights h; of machines.

Lemma 1 The optimal algorithm OPT satisfies the
following inequality:

M
lOPT|| < 2 pp omy + h;
Ji€L 1

i=

Proof: First, we consider the big jobs scheduled by
OPT. Let g; to be the time when the last big job
scheduled on machine M; in OPT is completed, if it
exits. Otherwise, g; = 0. Since all the machines are
identical, we may assume, without loss of generality, that
g1 2+ = gy. Then from the definition of the algorithm
A, we can see that g; < k; < h;, for i =1,..., M. Thus
all the big jobs scheduled by OPT should be completed
within the region R.

We consider the tiny jobs which do not belong to L.
They have the deadline smaller than or equal to £. Thus
they also should be completed within the region R in
OPT. This completes the proof.

Next, we shall obtain an upper bound of A. It shows
that <A schedules all the last jobs and the total work of

the other jobs scheduled by A is at least half of the
region R.

Lemma 2 The algorithm A satisfies the following

inequality:
1 M
1A=)" pem+s> Tk
Ji€L i=1

Proof: First, from the definition of the time ¢, we can
see that all the last jobs belonging to £ are scheduled by
A.

We consider only the big jobs and the tiny jobs with the
deadline smaller than or equal to ¢.

For the machines M; satisfying that k; > £, they are
busy during the interval [0,2k;], because of the definition
of the big job, that is, p; > Zk;.

If the number of the machines satisfying that k; > £ is
more than or equal to M, then it completes the proof.

Now, we assume that the number of the machines
satisfying that k; > € is less than M. In other words, for
some H< M, k; >%, i=1,...,H. Note that this is the
case that all the big jobs are scheduled by A. Then for
the machines M;, i = H + 1, ..., 1, satisfying that k; < ¢,
we shall show that the machines are busy during the
interval [0,2£] such that [> M.

We consider the time t when a tiny job [, with
deadline ¢ is rejected by A in the last. At time t, the
machines more than M are busy, because J, requires at
most M machines. Also since J; is a tiny job, that is,
p; S £, the machines should be busy at least until 37,
because if not, the job J, can be scheduled by £.
Therefore [> M and the machines M;, i =H+1,...,1,
satisfying that k; < £, are busy during the interval [0,3£].
Figure 2 represents the schedule of A for the tiny jobs.
This completes the proof.

M

Fig. 2. The schedule of tiny jobs in A.

Having the above lemmas, we can obtain the
approximation ratio of A.

Theorem 1 The algorithm A is a 2-machine 2-
approximation algorithm.

Proof: From Lemma 1 and Lemma 2, we obtain the
following inequalities:

1 M
A=) pomtz Yk
Ji€EL 2 i=1

> §||0PT||.

This completes the proof.

V. CONCLUSIONS

In this paper, we deal with the problem to schedule the
parallel jobs with deadlines. In particular, the algorithms
are allowed to have more machines than the adversary.
We provide a 2-approximation algorithm with the
machines two times more than the optimal algorithm.

474 Jae-Hoon Kim: APPROXIMATION ALGORITHMS FOR SCHEDULING PARALLEL JOBS WITH MORE MACHINES

As the further work, we may consider the problem in
which the jobs can be executed on any number of
machines but their execution times depend on the number
of machines allocated to it.

REFERENCES

[1]1 1. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz,
Handbook on Scheduling: From Theory to Applications. Springer,
Heidelberg, 2007.

[2] M. Drozdowski, “Scheduling multiprocessor tasks — an overview”,
European Journal of Operational Research, vol. 94(2), pp. 215-
230, 1996.

[31 1. Y. Leung, Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Chapman and Hall/CRC, 2004..

[4] A. V. Fishkin and G. Zhang, “On maximizing the throughput of multi-
processor tasks”, Theoretical Computer Science, vol. 302, pp. 319-335,
2003.

[5] J.DuandJ. Y. Leung, “Complexity of scheduling parallel task systems”,
SIAM J. Disc. Math., vol. 2(4), pp. 473-487, 1989.

[6] B. Johannes, “Scheduling parallel jobs to minimize the makespan”,
Journal of Scheduling, vol. 9(5), pp. 433-452, 2006.

{71 M. R Garey and R. L. Graham, “Complexity results for multiprocessor
scheduling under resource constraints”, SI4AM Journal on Computing, vol.
4(4), pp. 397411, 1975.

[8] A.K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, “Scheduling
independent multiprocessor tasks”, Algorithmica, vol. 32(2), pp. 247-261,
2007.

[9] K Jansen and L. Porkolab, “Linear-time approximation schemes for
scheduling malleable parallel tasks”, Algorithmica, vol. 32(3), pp. 507-
520,2002.

[10] I Schiermeyer, “Reverse-fitt A 2-optimal algorithm for rectangle
packing”, Proc. 2 Annual European Symposium on Algorithms, pp. 290-
299, 1994.

[11] A. Steinberg, “A strip-packing algoritim with absolute performance
bound 27, SIAM Journal on Computing, vol. 26(2), pp. 401-409,
1997.

[12} U. Schwiegelshohn, W. Ludwig, J. L. Wolf, J. J. Turek, and P. S. Yu,
“Smart SMART bounds for weighted reponse time scheduling”, SIAM
Journal on Computing, vol. 28(1), pp. 237-253, 1998.

[13] Oh-Heum Kwon and Kyung-Yong Chwa, “Scheduling parallel tasks with
individual deadlines”, Theoretical Computer Science, vol. 215(1-2), pp.
209-223, 1999.

Jae-Hoon Kim

Received his B.S. degree in Mathematics from
Sogang University in 1994, his M.S. degree in
Mathematics from KAIST in 1996, and his
Ph.D. degrec in Computer Science from
KAIST in 2003. He is currently an associate
professor at Division of Computer Engineering,
Pusan University of Foreign Studies. His
research interests include on-line algorithms,
scheduling, and computational geometry

