428 Sangook Moon : DESIGN OF AN FPGA-BASED IP USING SPARTAN-3E EMBEDDED SYSTEM

Design of an FPGA-based IP
Using SPARTAN-3E Embedded system

Sangook Moon, Member, KIMICS

Abstrac— Recent semiconductor design technology
has been substantially developed that we can design a
micro-system on a chip as well as implementing an
application specific IC in an FPGA. SPARTAN-3E
developed by Xilinx is equipped with an FPGA that
holds as much as 500 thousand transistors connected
with MicroBlaze softcore microprocessor bus system. In
this paper, we discuss a method of implementing an
embedded system wusing the SPARTAN-3E. We also
explain the peripherals and the bus protocols and the
expandability of this kind of embedded systems.

Index Terms— MicroBlaze, Embedded system, Platform
based design, FPGA.

L INTRODUCTION

WITH the development of recent semiconductor
technologies, we now can store tens or hundreds the
times of capacity of 1990’s hard disks into tiny flash
memories which is far smaller than a thumbnail.
Similarly, we now live an era in which we can build a
microprocessor based system as easy as a LEGO toy
with an application specific FPGA device with little cost
in no time, while we used to build an ASIC (application
specific integrated circuit) chip system at the cost of
more than tens of thousand dollars. These types of
FPGA systems are equipped with microprocessors and
the bus systems as shapes of platforms, which require
some kind of protocols with external peripherals to
acquire both hardware and software verification in a
very short time. We suggest a method which guides you
through the process of wusing Xilinx Embedded
Development Kit (EDK) software tools, in which this
contribution will use the Xilinx Platform Studio (XPS)
tool to create a simple processor system and the process
of adding a custom OPB (On-chip Peripheral Bus)
peripheral (an 32-bit adder circuit) to that processor
system by using the functions which the tool provide. In
this paper, we suggest a method to develop an embedded
system easily in a short time, using the Xilinx
SPARTAN-3E FPGA board.

Manuscript received July 20, 2011; revised July 29, 2011; accepted
August 3, 2011.

Sangook Moon is with the Department of Electronic Engineering,
Mokwon University, Daejeon, 302-729, Korea (Email: smoon
@mokwon.ac.kr)

II. SOFTCORE MICROPROCESSOR

Microblaze is a virtual microprocessor core which is
automatically synthesized using the special code blocks in
the Xilinx FPGA device. One of the advantages of this
kind of implementation is that we can duplicate the
microprocessor core as many as we need [1].

Microblaze conforms to the 32bit Harvard RISC
architecture and optimally designed for automatically
synthesizable in the FPGA (Fig. 1). The separate 32bit
instruction and data buses can get access to the external
memory as well as the internal memory. The architecture
has a 3 stage pipeline structure and there are 32 general
registers, an ALU, a shifter, two-level interrupts, a barrel
shifter, a divider, a multiplier, an FPU, and I/D cache to
have an extended structure. This type of flexibility helps
designers adjust the tradeoff between the area and the
speed [2][3] (Fig. 2).

Dara-side
buy interface

Instrnction-side
bus interface

e

2 DXCL_M
DXCL_S

lXCL_M<j 5
’XCL-SE> % Program

Counter Speciat
Registers

R 7t

53

BI‘; Py Instruction [N] B];S
T I g B o
Instruction §
Decode a ;;
j> Register File N > MFSLO.15
x|, T SFSLO.15
nd

Optionat MicroBlaze feature

Fig. 1. MicroBlaze core block diagram.

I11. OPB (ON-CHIP PERIPHERAL BUS)
SYSTEM

In order to develop an application specific embedded
system, building of a bus system is required. The Xilinx
FPGA EDK (embedded system development kit) supports
build either OPB or PLB (processor local bus) using the
tool. In this paper, we chose the OPB because the OPB is
easier and quicker to implement [4]. Fig. 3 shows the

INTERNATIONAL JOURNAL OF KIMICS, VOL. 9, NO. 4, AUGUST 2011

429

OPB protocol between the peripheral bus and the softcore
Microblaze processor. With this specified protocol, we
could achieve fast communication between inside the
system.

ALL
Shift

Cirichis Pariphersl Bus (OFB)

Iy Basie Procesior Functions
Z1 Contignmabie Functions
B Desigrar Defined Blocks

B Periphecals« Xifisx o brd
Party or Deswgrsy Defined

My
Seralrtor

Fig. 2. MicroBlaze system block diagram.

s

bl OhA

Fig. 3. The OPB bus protocol.

IV. TEST IP DESIGN

For the purpose of easy test, we created a custom 32-bit
adder peripheral. We added the following code to
user_logic.vhd file.

We firstly placed the code below to designate the
signals for user logic slave model s/w accessible register
example. This is declaring signals to be used in the
custom 32-bit adder circuit.

:std_logic vector(0 ro C DWIDTH-1):
- s1d_logic vector((to 32):

signal sum
signal ¢

Secondly, we added the signal sum to the SLAVE
REG_READ PROC and change the signal slv_reg2 to
sum, as shown below. This will let the user to read the
sum by reading the third register located at the base
address of custom_logic adder + 0x2.

SLAVE REG_READ_PROC : process(slv_reg read_select, slv_reg0, slv_regl, slv_teg2 sum)is
begin
case slv_reg_read_select is
when "160 slv_ip2bus_data <= slv_regh:
when "010 _ip2bus_data < - regl:
when "00 slv_ip2bus_data <= sum;
when others = slv_ip2bus_data <= (others == '0");
end case;
end process SLAVE_REG_READ_PROC:

Finally, all the vhdl code below is needed to create the
custom adder peripheral, a 32-bit ripple carry adder circuit
that needs to be placed after the end process
SLAVE REG READ PROC. This is implemented in a
process that will execute every time that the value of
slv_reg0 or slv_reg! or if both of them change. The 32-bit
ripple carry adder circuit is implemented using a for loop
instead of of a vhdl port map method because of the fact
of not being able to get the vhdl port map method to work
with the EDK.

adder PROC : process(slv_reg0. sly_regl)is

begin
c(32) <= 0" -- Let ¢(32) = ¢in of the first LSB full adder
-~ Create 32 full adder using a for loop
tor { in 31 downto 0 loop

sum{i} <= slv reg({i) xor siv regl(i} xor ¢(i+1i);
oty <= (shv_teg0ii) and slv_reg1()} or (shv_reg0(i) and e(i+1)) or (slv_regl(i) and c(i+ 1))

el loop:
end process addes PROCE

V. IMPLEMENTATION AND
CONCLUSION

We first create the MHS (microprocessor hardware
specification) file and the MSS (microprocessor
software specification) file in the EDK to define the
hardware and the software specifications. After that, we
set the operation clock speed and the size of the caches,
the OPB bus system, and the other peripherals with the
base system builder conforming to the OPB bus protocol.
We inserted using the JTAG port interface to confirm
the contents of the internal registers. As an application
specific device, we used VHDL (very high speed
hardware description language) to produce a 32-bit
custom booth multiplier.

430 Sangook Moon : DESIGN OF AN FPGA-BASED IP USING SPARTAN-3E EMBEDDED SYSTEM

A rapid prototype of a 32-bit multiplier was described
in VHDL and we loaded the HDL to the OPB bus system
in the XPS. We put the protocol together and
automatically synthesized the hardware image and
transferred to the SPARTAN-3E board. Then we also
transferred the software test program and confirmed the
operation through the terminal via the UART. Fig. 4
shows the target board of SPARTAN-3E. We used the PC
and a USB cable to transfer the hardware and the software
image files, and we used the XMD debugger to verify the
process of the result of the test programs. For the
verification of the embedded system, we used the C
program result and the hardware multiplier result to
compare the functionality.

We suggested a method of rapidly implementing an
embedded system wusing the Xilinx SPARTAN-3E
development board. In this way, we can quickly produce
an application specific embedded system with well made
specification of software and hardware.

Fig. 4. SPARTAN-3E target board.

REFERENCES

[1] "Xilinx UG230 SPARTAN-3E Starter Kit Board User Guide”,
http://www.xilinx.com

[2] "Microblaze tutorial”, http://www.xilinx.com

[3] "Microblaze microprocessor reference guide"”, hitp://www.xilinx.com

[4] http://ecasp.ece.iit.edu

Sangook Moon was bomn in Korea, in 1971.
He received the B.S., M.S. and Ph.D. degree in
electronic engineering from Yonsei University,
Korea in 1995, 1997, and 2002 respectively.
After the graduation, he had been working at
Hynix Semiconductor as a senior engineer. In
2004, he joined the department of Electronic
Engineering at Mokwon University, where he
is currently an associate professor. His current
research interests include VLSI, crypto-
processors, computer arithmetic, SoC, and embedded systems.

