Abstract
Terminology recognition system which is a preceding research for text mining, information extraction, information retrieval, semantic web, and question-answering has been intensively studied in limited range of domains, especially in bio-medical domain. We propose a domain independent terminology recognition system based on machine learning method using dictionary, syntactic features, and Web search results, since the previous works revealed limitation on applying their approaches to general domain because their resources were domain specific. We achieved F-score 80.8 and 6.5% improvement after comparing the proposed approach with the related approach, C-value, which has been widely used and is based on local domain frequencies. In the second experiment with various combinations of unithood features, the method combined with NGD(Normalized Google Distance) showed the best performance of 81.8 on F-score. We applied three machine learning methods such as Logistic regression, C4.5, and SVMs, and got the best score from the decision tree method, C4.5.
문헌에서의 전문용어 인식 연구는 정보검색, 정보추출, 시맨틱 웹, 질의응답 분야 등의 연구를 위한 선행 연구로서, 지금까지 대부분 특정 분야, 특히 생의학 분야에서 집중되어 연구되어 왔다. 그러나 기존 연구들이 특정 도메인 또는 문헌 내부 통계 정보를 활용함으로써 범용적인 전문용어 인식에 한계점을 보여 왔기 때문에, 본 연구에서는 웹 검색 결과와 사전, 후보용어의 문형 특징 등을 활용하는 기계 학습 기반 범용 전문용어 인식 방법을 제안하였다. 제안한 방법을 문헌의 지역 통계 정보를 사용하는 방법(C-value)과 비교 실험하여 80.8%의 F-값으로 6.5%의 성능향상을 보였다. 다양한 응집도 자질들을 접목한 두 번째 실험에서는 Normalized Google Distance 방법과 접목한 방식이 F-값 81.8%의 성능으로 최고의 성능을 나타냈다. 기계 학습 방법으로는 로지스틱 회귀분석, C4.5, SVMs 등을 적용하였는데, 일반적으로 이진 분류에 좋은 성능을 보이는 SVMs과 로지스틱 회귀분석 방법보다 결정 트리 방식의 C4.5가 전반적으로 좋은 성능을 보였다.