DOI QR코드

DOI QR Code

Isolation and Characterization of Lactic Acid Bacteria with Angiotensin-Converting Enzyme Inhibitory and Antioxidative Activities

안지오텐신 전환효소 저해 활성 및 항산화 활성을 가진 젖산균의 분리 및 특성

  • Park, Sung-Bo (College of Natural Resources and Life Science, Pusan National University) ;
  • Kim, Jeong-Do (College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Na-Ri (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeong, Jin-Ha (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeong, Seong-Yun (Department of Medical Life Science, Catholic University of Daegu) ;
  • Lee, Hee-Seob (Department of Food Science and Nutrition, Pusan National University) ;
  • Hwang, Dae-Youn (College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Jong-Sup (Sandong Processing Plant, Nonghyup) ;
  • Son, Hong-Joo (College of Natural Resources and Life Science, Pusan National University)
  • 박성보 (부산대학교 생명자원과학대학) ;
  • 김정도 (부산대학교 생명자원과학대학) ;
  • 이나리 (부산대학교 생명자원과학대학) ;
  • 정진하 (부산대학교 생명자원과학대학) ;
  • 정성윤 (대구가톨릭대 의생명과학과) ;
  • 이희섭 (부산대학교 식품영양학과) ;
  • 황대연 (부산대학교 생명자원과학대학) ;
  • 이종섭 (밀양 산동농협) ;
  • 손홍주 (부산대학교 생명자원과학대학)
  • Received : 2011.07.20
  • Accepted : 2011.10.24
  • Published : 2011.10.31

Abstract

In this study, we isolated and characterized plant-associated lactic acid bacteria which are able to produce angiotensin-converting enzyme (ACE) inhibitory and antioxidative activities. Five lactic acid bacteria were isolated from plants (grape and leek), a plant-associated fermentative product (Kimchi) and Korean traditional alcohol (Dongdongju). Strains K-1 and K-21 from Kimchi, strain L-5 from leek, strain G-3 from grape, and strain D-3 from Dongdongju were identified as Pediococcus pentosaceus, Lactobacillus plantarum, Weissella cibaria, L. plantarum, and L. brevis, respectively, by 16S rRNA gene analysis. ACE inhibitory activities of isolated strains ranged from 44.3 to 71.9% in the MRS broth. G-3, L-5 and K-1 strains especially showed high ACE inhibitory activities (59.8-98.69%) in the MRS broth containing skim milk. DPPH radical scavenging activities of the strains were in the range of 42.5-82.7%. All strains showed varying levels of resistance in artificial gastric fluid (pH 2.5), retaining viability ranging from 42.2 to 88.1% after 3 hr of incubation. All strains showed high resistance to 0.3% oxgall after 24 hr of incubation; survival rates were in the range of 55.4-112.8%. Isolated strains were found to be antagonistic to some pathogens including Pseudomonas aeruginosa.

본 연구에서는 ACE 저해능 및 항산화능이 있는 식물성 젖산균을 다양한 식물체로부터 분리한 후, 그 특성을 조사하였다. 김치, 부추, 포도 및 동동주에서 K-1, K-21, L-5, G-3 및 D-3 균주가 분리되었으며, 16S rRNA gene 염기서열 분석을 통하여 이들은 각각 Pediococcus pentosaceus, Lactobacillus plantarum, Weissella cibaria, L. plantarum 및 L. brevis로 동정되었다. 분리균주들은 MRS broth에서 44.3-71.9%의 ACE 저해능을 나타내었으며, 특히 G-3, L-5, K-1 균주는 skim milk가 함유된 MRS broth에서 59.0-8-98.6%의 높은 ACE 저해능을 나타내었다. 분리 균주는 42.5-82.7%의 DPPH radical 소거능을 나타내었으며, G-3 및 K-1 균주는 pH 2.5의 인공위액에서 42.2-88.1%의 높은 생존율을 나타내었다. 분리균주는 0.3% oxgall에서 24시간 배양시 55.4-112.8%의 내성을 나타내었다. 또한 분리균주는 유기산 생성에 따른 pH 감소 효과로 인하여 Pseudomonas aeruginosa를 포함한 일부 병원성 세균의 생육을 억제할 수 있었다.

Keywords

References

  1. Azzi, A.., K. J. A. Davies, and F. Kelly. 2004. Free radical biology-terminology and critical thinking. FEBS Lett. 558, 3-6. https://doi.org/10.1016/S0014-5793(03)01526-6
  2. Baek, H., H. R. Ahn, Y. S. Cho, and K. H. Oh. 2010. Antibacterial effects of Lactococcus lactis HK-9 isolated from feces of a new born infant. Korean J. Microbiol. 46, 127-133.
  3. Begley, M., C. Hill, and C. G. M. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  4. Cho, Y. H., J. Y. Imm, H. Y. Kim, S. G. Hong, S. J. Hwang, D. J. Park, and S. J. Oh. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Kor. J. Food Sci. Ani. Resour. 29, 640-646. https://doi.org/10.5851/kosfa.2009.29.5.640
  5. Cho, Y. H., S. N. Park, and S. W. Jeong. 2009. A study on the physiological activity and industrial prospects of plant-origin lactic acid bacteria. Korean J. Dairy Sci. Technol. 27, 53-57.
  6. Chung, H. S. and D. W. Chushman. 1971. Spectrometric assay and properties of angiotensin-converting enzyme of rabbit lung. Biochem. Phamacol. 20, 1637-1641. https://doi.org/10.1016/0006-2952(71)90292-9
  7. Cotter, P. D., C. Hill, and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777-788. https://doi.org/10.1038/nrmicro1273
  8. Hammes, W. P. and C. Hertel, 2002. Research approaches for pre- and probiotics: challenges and outlook. Food Res. Int. 35, 165-170. https://doi.org/10.1016/S0963-9969(01)00178-8
  9. Hechard, Y., M. Dherbomez, Y. Cenatiempo, and F. Lettllier. 1990. Antagonism of lactic acid bacteria from goats' milk against pathogenic strains assessed by the sandwich method. Lett. Appl. Microbiol. 11, 185-188. https://doi.org/10.1111/j.1472-765X.1990.tb00156.x
  10. Islam, M. A., C. H. Yun, Y. J. Choi, and C. S. Cho. 2010. Microencapsulation of live probiotic bacteria. J. Microbiol. Biotechnol. 20, 1367-1377. https://doi.org/10.4014/jmb.1003.03020
  11. Jeon, C. P., Y. H. Kim, J. B. Lee, M. S. Jo, K. S. Shin, C. S. Choi, and G. S. Kwon. 2010. Physiological characteristics and angiotensin converting enzyme inhibitory activity of Lactobacillus brevis HLJ59 isolated from salted shrimp. Korean J. Microbiol. 46, 9-14.
  12. Kaizu, H., H. Sasaki, H. Nakajima, and Y. Suzuki. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76, 2493-2499. https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  13. Kobayashi, Y., K. Tohyama, and T. Terashima. 1974. Tolerance of the multiple antibiotic resistant strain. Jpn. J. Microbiol. 29, 691-697.
  14. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175, In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York.
  15. Lee, Y. and H. C. Chang. 2008. Isolation and characterization of Kimchi lactic acid bacteria showing anti-Helicobacter pylori activity. Kor. J. Microbiol. Biotechnol. 35, 106-114.
  16. Lim S. D., K. S. Kim, and J. R. Do. 2008. Physiological characteristics and ACE inhibitory activity of Lactobacillus zeae RMK354 isolated from raw milk. Korean J. Food. Sci. Ani. Resour. 28, 587-595. https://doi.org/10.5851/kosfa.2008.28.5.587
  17. Lim, Y. S., S. Y. Kim, and S. K. Lee. 2008. Characteristics of lactic acid bacteria isolated from Kefir made of goat milk. Korean J. Food. Sci. Ani. Resour. 28, 82-90. https://doi.org/10.5851/kosfa.2008.28.1.82
  18. Lu, Y. and Y. Foo. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68, 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3
  19. Messens, W. and L. De Vuyst. 2002. Inhibitory substances produced by Lactobacilli isolated from sourdoughs- a review. Int. J. Food Microbiol. 72, 31-43. https://doi.org/10.1016/S0168-1605(01)00611-0
  20. Molin, G. 2001. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am. J. Clin. Nutr. 73, 380S-385S.
  21. Philipp, B. 2011. Bacterial degradation of bile salts. Appl. Microbiol. Biotechnol. 89, 903-915. https://doi.org/10.1007/s00253-010-2998-0
  22. Pihlanto, A., T. Virtanen, and H. Korhonen. 2010. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int. Dairy J. 20, 3-10. https://doi.org/10.1016/j.idairyj.2009.07.003
  23. Quiros, A., B. Hernandez-Ledesma, M. Ramos, L. Amigo, and I. Recio. 2005. Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir. J. Dairy Sci. 88, 3480-3487. https://doi.org/10.3168/jds.S0022-0302(05)73032-0
  24. Saarela, M., G. Mogensen, R. Fonden, J. Matto, and T. Mattila-Sandholm. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84, 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 406-426.
  26. Saliminen, S., M. Laine, A. Wright, J. Vuopio-Varkila, T. Korhonen, and T. Mattila-Sandholm. 1996. Development of selection criteria for probiotic strains to assess their potential functional foods: a nordic and european approach. Biosci. Microflora 15, 61-67. https://doi.org/10.12938/bifidus1996.15.61
  27. Sun, T., S. Zhao, H. Wang, C. Cai, Y. Chen, and H. Zhang. 2009. ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur. Food Res. Technol. 228, 607-612. https://doi.org/10.1007/s00217-008-0969-9
  28. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882.

Cited by

  1. Antioxidant and ACE Inhibiting Activities of Sugared-Buchu (Allium ampeloprasum L. var. porum J. Gay) Fermented with Lactic Acid Bacteria vol.24, pp.6, 2014, https://doi.org/10.5352/JLS.2014.24.6.671
  2. Functional Characterization of Lactobacillus sakei JK-17 Isolated from Long-term Fermented Kimchi, Muk Eun Ji vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.18
  3. Studies on the Enhanced Physiological Activities of Mixed Lactic Acid Bacteria Isolated from Fermented Watery Kimchi, Dongchimi vol.30, pp.5, 2015, https://doi.org/10.7841/ksbbj.2015.30.5.245
  4. Change in physicochemical properties, phytoestrogen content, and antioxidant activity during lactic acid fermentation of soy powder milk obtained from colored small soybean vol.25, pp.6, 2018, https://doi.org/10.11002/kjfp.2018.25.6.696