References
- Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical Distribution, John Willey & Stone, New York.
- Balakrishnan, N. and Puthenpura, S. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution, Journal of statistical Computation and Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
- Balakrishnan, N. andWong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half logistic distribution with Type-II right-censoring, IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
- Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis, The Statistician, 46, 387-398. https://doi.org/10.1111/1467-9884.00091
- Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressive Type-II Censoring, Communications of the Korean Statistical Society, 15, 815-823. https://doi.org/10.5351/CKSS.2008.15.6.815
- Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining confidence bounds and tolerance bounds based on best linear invariant estimates of parameters of the extreme value distribution, Technometrics, 15, 87-101. https://doi.org/10.2307/1266827
- Varian, H. R. (1975). A Bayesian approach to real estate assessment. In: S. E. Feinberg and A. Zellner, Eds., Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, North Holland, Amsterdam, 195-208.
- Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function, Journal of American Statistical Association, 81, 446-451. https://doi.org/10.2307/2289234
Cited by
- Bayesian analysis of an exponentiated half-logistic distribution under progressively type-II censoring vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1455
- An Analysis of Record Statistics based on an Exponentiated Gumbel Model vol.20, pp.5, 2013, https://doi.org/10.5351/CSAM.2013.20.5.405