References
- Choi, H.; Pereira, A. R.; Cao, Z.; Shuman, C. F.; Engene, N.; Byrum, T.; Matainaho, T.; Murray, T. F.; Mangoni, A.; Gerwick, W. H. J. Nat. Prod. 2010, 73, 1411-1421. https://doi.org/10.1021/np100468n
- Malloy, K. L.; Villa, F. A.; Engene, N.; Matainaho, T.; Gerwick, L.; Gerwick, W. H. J. Nat. Prod. 2011, 74, 95-98. https://doi.org/10.1021/np1005407
- Zhang, D. J.; Liu, R. F.; Li, Y. G.; Tao, L. M.; Tian, L. Chem. Pharm. Bull. 2010, 58, 1630-1634. https://doi.org/10.1248/cpb.58.1630
- Andrianasolo, E. H.; Goeger, D.; Gerwick, W. H. Pure Appl. Chem. 2007, 79, 593-602. https://doi.org/10.1351/pac200779040593
- Balunas, M. J.; Linington, R. G.; Tidgewell, K.; Fenner, A. M.; Ureña, L. D.; Togna, G. D.; Kyle, D. E.; Gerwick, W. H. J. Nat. Prod. 2010, 73, 60-66. https://doi.org/10.1021/np900622m
- Simmons, T. L.; Engene, N.; Ureña, L. D.; Romero, L. I.; Barría, E. O.; Gerwick, L.; Gerwick, W. H. J. Nat. Prod. 2008, 71, 1544- 1550. https://doi.org/10.1021/np800110e
- Nakao, Y.; Kawatsu, S.; Okamoto, C.; Okamoto, M.; Matsumoto, Y.; Matsunaga, S.; Soest, R. W. M.; Fusetani, N. J. Nat. Prod. 2008, 71, 469-472. https://doi.org/10.1021/np8000317
- McPhail, K. L.; Correa, J.; Linington, R. G.; González, J.; Barría, E. O.; Capson, T. L.; Gerwick, W. H. J. Nat. Prod. 2007, 70, 984- 988. https://doi.org/10.1021/np0700772
- Desjardine, K.; Pereira, A.; Wright, H.; Matainaho, T.; Kelly, M.; Andersen, R. J. J. Nat. Prod. 2007, 70, 1850-1583. https://doi.org/10.1021/np070209r
- Shigemori, H.; Wakuri, S.; Yazawa, K.; Nakamura, T.; Sasaki, T.; Kobayashi, J. Tetrahedron 1991, 47, 8529-8534. https://doi.org/10.1016/S0040-4020(01)82396-6
- Yamaguchi, K.; Tsuji, T.; Wakuri, S.; Yazawa, K.; Kondo, K.; Shigemori, H.; Kobayashi, J. Biosci. Biotech. Biochem. 1993, 57, 195-199. https://doi.org/10.1271/bbb.57.195
- Schneekloth, J. S.; Sanders, J. L.; Hines, J.; Crews, C. M. Bioorg. Med. Chem. Lett. 2006, 16, 3855-3858. https://doi.org/10.1016/j.bmcl.2006.04.029
- Hines, J.; Groll, M.; Fahnestock, M.; Crews, C. M. Chem. Biol. 2008, 15, 501-512. https://doi.org/10.1016/j.chembiol.2008.03.020
- Lin, G.; Li, D.; Chidawanyika, T.; Nathan, C.; Li, H. Arch. Biochem. Biophy. 2010, 501, 214-220. https://doi.org/10.1016/j.abb.2010.06.009
- Lee, Y. M.; Dang, T. H.; Hong, J.; Lee, C. O.; Bae, K. S.; Kim, D. K.; Jung, J. H. Bull. Korean Chem. Soc. 2010, 31, 205-208. https://doi.org/10.5012/bkcs.2010.31.01.205
- Xu, D.; Ondeyka, J.; Harris, G. H.; Zink, D.; Kahn, J. N.; Wang, H.; Bills, G.; Platas, G.; Wang, W.; Szewczak, A. A.; Liberator, P.; Roemer, T.; Singh, S. B. J. Nat. Prod. 2011.
- Kaech, A.; Hofer, M.; Rentsch, D.; Schnider, C.; Egli, T. Biodegradation 2005, 16, 461-473. https://doi.org/10.1007/s10532-004-5164-5
- Calafat, A. M.; Marzilli, L. G. Inorg. Chem. 1993, 32, 2906-2911. https://doi.org/10.1021/ic00065a018
- Greenzaid, P.; Luz, Z.; Samuel, D. J. Am. Chem. Soc. 1967, 89, 749-756. https://doi.org/10.1021/ja00980a004
- Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596. https://doi.org/10.1007/BF02908688
- Guaragna, A.; Nisco, M. D.; Pedatella, S.; Palumbo, G. Tetrahedron Asymmetry 2006, 17, 2839-2841. https://doi.org/10.1016/j.tetasy.2006.10.023
- Silipo, A.; Sturiale, L.; Garozzo, D.; Castro, C.; Lanzetta, R.; Parrilli, M.; Grant, W. D.; Molinaro, A. Eur. J. Org. Chem. 2004, 2263-2271.
- Sjogren, J.; Magnusson, J.; Broberg, A.; Schnürer, J.; Kenne, L. Appl. Environ. Microbiol. 2003, 7554-7557.
- Smith, M. M.; March, J. March's Advanced Organic Chemistry, 5th ed.; John Wiley and Sons. Inc. 2001.
- Lim, Y. J.; Park, H. S.; Im, K. S.; Lee, C. O.; Hong, J.; Lee, M. Y.; Kim, D. K.; Jung, J. H. J. Nat. Prod. 2001, 64, 46-53. https://doi.org/10.1021/np000252d
- Hyde, K. D.; Farrant, C. A.; Jones, E. B. G. Bot. Mar. 1987, 30, 291-303. https://doi.org/10.1515/botm.1987.30.4.291
- Williams, D. E.; Craig, M.; Holmes, C. F. B.; Andersen, R. J. J. Nat. Prod. 1996, 59, 570-575. https://doi.org/10.1021/np960108l
- Maddox, N. J.; Lin, S. J. Liq. Chrom. Rel. Technol. 1999, 22, 1367-1380. https://doi.org/10.1081/JLC-100101738
Cited by
- ChemInform Abstract: A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor. vol.43, pp.9, 2012, https://doi.org/10.1002/chin.201209202
- Endophytes and associated marine derived fungi—ecological and chemical perspectives vol.57, pp.1, 2012, https://doi.org/10.1007/s13225-012-0191-8
- Marine-Derived Aspergillus Species as a Source of Bioactive Secondary Metabolites vol.15, pp.5, 2013, https://doi.org/10.1007/s10126-013-9506-3
- Marine natural products vol.30, pp.2, 2013, https://doi.org/10.1039/C2NP20112G
- New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics vol.31, pp.10, 2014, https://doi.org/10.1039/C4NP00046C
- Total synthesis of fellutamides, lipopeptide proteasome inhibitors. More sustainable peptide bond formation vol.14, pp.35, 2016, https://doi.org/10.1039/C6OB01233G
- sp. Fungus vol.19, pp.8, 2017, https://doi.org/10.1021/acs.orglett.7b00661
- Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00828
- Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications vol.14, pp.2, 2016, https://doi.org/10.3390/md14020038
- Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms vol.15, pp.3, 2017, https://doi.org/10.3390/md15030068
- Clogging the Ubiquitin-Proteasome Machinery with Marine Natural Products: Last Decade Update vol.16, pp.12, 2018, https://doi.org/10.3390/md16120467
- Aspergillus section Versicolores : nine new species and multilocus DNA sequence based phylogeny vol.3, pp.1, 2011, https://doi.org/10.5598/imafungus.2012.03.01.07
- Synthesis of Fellutamide C and its Diastereomer vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2777
- New Dihydroisocoumarin Root Growth Inhibitors From the Sponge-Derived Fungus Aspergillus sp. NBUF87 vol.10, pp.None, 2011, https://doi.org/10.3389/fmicb.2019.02846
- Resistance Gene-Directed Genome Mining of 50 Aspergillus Species vol.4, pp.4, 2011, https://doi.org/10.1128/msystems.00085-19
- Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017 vol.25, pp.4, 2011, https://doi.org/10.3390/molecules25040853
- Identification of Secondary Metabolites from Aspergillus pachycristatus by Untargeted UPLC-ESI-HRMS/MS and Genome Mining vol.25, pp.4, 2011, https://doi.org/10.3390/molecules25040913
- Acrophiarin (antibiotic S31794/F‐1) from Penicillium arenicola shares biosynthetic features with both Aspergillus‐ and Leotiomycete‐type echinocandins vol.22, pp.6, 2020, https://doi.org/10.1111/1462-2920.15004
- Marine derived tyrosinase inhibitors vol.37, pp.4, 2011, https://doi.org/10.12714/egejfas.37.4.15
- Bioactive marine metabolites derived from the Persian Gulf compared to the Red Sea: similar environments and wide gap in drug discovery vol.9, pp.None, 2011, https://doi.org/10.7717/peerj.11778
- Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System vol.22, pp.24, 2011, https://doi.org/10.3390/ijms222413309
- Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability vol.811, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2021.152357