References
- Sandermann, H. Trends Biochem. Sci. 1992, 17, 82. https://doi.org/10.1016/0968-0004(92)90507-6
- Frova, C. Physiol. Plant. 2003, 119, 469. https://doi.org/10.1046/j.1399-3054.2003.00183.x
- Marrs, K. A. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 127. https://doi.org/10.1146/annurev.arplant.47.1.127
- Goff, S. A.; Ricke, D.; Lan, T.-H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; Oeller, P.; Varma, H.; Hadley, D.; Hutchison, D.; Martin, C.; Katagiri, F.; Lange, B. M.; Moughamer, T.; Xia, Y.; Budworth, P.; Zhong, J.; Miguel, T.; Paszkowski, U.; Zhang, S.; Colbert, M.; Sun, W.-L.; Chen, L.; Cooper, B.; Park, S.; Wood, T. C.; Mao, L.; Quail, P.; Wing, R.; Dean, R.; Yu, Y.; Zharkikh, A.; Shen, R.; Sahasrabudhe, S.; Thomas, A.; Cannings, R.; Gutin, A.; Pruss, D.; Reid, J.; Tavtigian, S.; Mitchell, J.; Eldredge, G.; Scholl, T.; Miller, R. M.; Bhatnagar, S.; Adey, N.; Rubano, T.; Nadeem, T.; Robinson, R.; Feldhaus, J.; Macalma, T.; Oliphant, A.; Briggs, S. Science 2002, 296, 92. https://doi.org/10.1126/science.1068275
- Soranzo, N.; Sari Gorla, M.; Mizzi, L.; Toma, G. D.; Frova, C. Mol. Genet. Geonomics 2004, 271, 511. https://doi.org/10.1007/s00438-004-1006-8
- Thom, R.; Cunmins, I.; Dixon, D. P.; Edwards, R.; Cole, D. J.; Lapthorn, A. J. Biochemistry 2002, 41, 7008. https://doi.org/10.1021/bi015964x
- Dixon, D. P.; Cole, D. J.; Edwards, R. Plant Mol. Biol. 1998, 36, 75. https://doi.org/10.1023/A:1005958711207
- Moons, A. FEBS Letter 2003, 553, 427. https://doi.org/10.1016/S0014-5793(03)01077-9
- Cho, H. Y.; Yoo, S.-Y.; Kong, K.-H. Pest. Biochem. Physiol. 2006, 86, 110. https://doi.org/10.1016/j.pestbp.2006.02.003
- Dixon, D. P.; McEwen, A. G.; Lapthorn, A. J.; Edward, R. Biol. Chem. 2003, 278, 23930. https://doi.org/10.1074/jbc.M303620200
- Droog, F. N. J.; Hooykaas, P. J. J.; Van der Zaal, B. J. Plant Physiol. 1995, 107, 1139.
- Dixon, D. P.; Cole, D. J.; Edwards, R. Plant Mol. Biol. 1999, 40, 997. https://doi.org/10.1023/A:1006257305725
- Andrews, C. J.; Cummins, I.; Skipsey, M.; Grundy, N. M.; Jepson, I.; Townson, J.; Edwards, R. Pest. Biochem. Physiol. 2005, 82, 205. https://doi.org/10.1016/j.pestbp.2004.11.009
- McGonigle, B.; Keeler, S. J.; Lau, S. M. C.; Koeppe, M. K.; O'Keefe, D. P. Plant Physiol. 2000, 124, 1105. https://doi.org/10.1104/pp.124.3.1105
- Yang, X.; Sun, W.; Liu, J.-P.; Liu, Y.-J.; Zeng, Q.-Y. Plant Physiol. Biochem. 2009, 47, 1061. https://doi.org/10.1016/j.plaphy.2009.07.003
- Cho, H.-Y.; Lee, H.-J.; Kong, K.-H. J. Biochem. Mol. Biol. 2007, 40, 511. https://doi.org/10.5483/BMBRep.2007.40.4.511
- Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1987, 77, 398.
- Flohe, L.; Gunzler, W. A. Methods. Enzymol. 1985, 105, 114.
- Hatton, P. J.; Dixon, D.; Cole, D. J.; Edwards, R. Pestic. Sci. 1996, 46, 267. https://doi.org/10.1002/(SICI)1096-9063(199603)46:3<267::AID-PS347>3.0.CO;2-N
- Kong, J.-N.; Jo, D.-H.; Do, H.-D.; Lee, J.-J.; Kong, K.-H. Bull. Koran Chem. Soc. 2010, 31, 2497. https://doi.org/10.5012/bkcs.2010.31.9.2497
Cited by
- Engineering High Catalytic Efficiency of the Steroid Isomerase Activity of Human Glutathione S-transferase P1-1 vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.645
- Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR vol.23, pp.2, 2014, https://doi.org/10.1007/s10646-013-1156-8
- vol.65, pp.9, 2017, https://doi.org/10.1021/acs.jafc.7b00057
- modulates a regulatory network leading to heavy metal and drought stress tolerance vol.11, pp.2, 2019, https://doi.org/10.1039/C8MT00204E
- Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa vol.33, pp.12, 2011, https://doi.org/10.5012/bkcs.2012.33.12.4169