References
- Kim, H. K.; Sathaye, S. D.; Hwang, Y. K.; Jhung, S. H.; Hwang, J. S.; Kwon, S. H.; Park, S. E.; Chang, J. S. Bull. Korean Chem. Soc. 2005, 26, 1881. https://doi.org/10.5012/bkcs.2005.26.11.1881
- Huang, H.; Tan, O. K.; Lee, Y. C.; Tran, T. D.; Tse, M. S.; Yao, X. Appl. Phys. Lett. 2005, 87, 163123. https://doi.org/10.1063/1.2106006
- Oh, E.; Choi, H. Y.; Jung, S. H.; Cho, S.; Kim, J. C.; Lee, K. H.; Kang, S. W.; Kim, J.;Yun, J. Y.; Jeong, S. H. Sens. Actuators B 2009, 141, 239. https://doi.org/10.1016/j.snb.2009.06.031
- Chang, J. F.; Kuo, H. H.; Leu, I. C.; Hon, M. H. Sens. Actuators B 2002, 84, 258. https://doi.org/10.1016/S0925-4005(02)00034-5
- Jun, J. H.; Yun, J.; Cho, K.; Hwang, I. S.; Lee, J. H.; Kim, S. Sens. Actuators B 2009, 140, 412. https://doi.org/10.1016/j.snb.2009.05.019
- Wang, J. X.; Sun, X. W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O. K.; Vayssieres, L. Nanotechnology 2006, 17, 4995. https://doi.org/10.1088/0957-4484/17/19/037
- Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897. https://doi.org/10.1126/science.1060367
- Satoh, M.; Tanaka, N.; Ueda, Y.; Ohshio, S.; Saitoh, H. Jpn. J. Appl. Phys. 1999, 38, L586. https://doi.org/10.1143/JJAP.38.L586
- Cho, M. Y.; Kim, M. S.; Choi, H. Y.; Yim, K. G.; Leem, J. Y. Bull. Korean Chem. Soc. 2011, 32, 880. https://doi.org/10.5012/bkcs.2011.32.3.880
- Li, Z.; Huang, X.; Liu, J.; Ai, H. Mater. Lett. 2008, 62, 2507. https://doi.org/10.1016/j.matlet.2007.12.033
- Jiang, Y.; Wu, M.; Wu, X.; Sun, Y.; Yin, H. Mater. Lett. 2009, 63, 275. https://doi.org/10.1016/j.matlet.2008.10.021
- Jung, S. H.; Oh, E.; Lee, K. H.; Park, W.; Jeong, S. H. Adv. Mater. 2007, 19, 749. https://doi.org/10.1002/adma.200601859
- Oh, E.; Jung, S. H.; Lee, K. H.; Jeong, S. H.; Yu, S. G.; Rhee, S. J. Mater. Lett. 2008, 62, 3456. https://doi.org/10.1016/j.matlet.2008.02.073
- Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. J. Cryst. Growth 1999, 203, 186. https://doi.org/10.1016/S0022-0248(99)00076-7
- Sun, Y.; Wang, H. H. Adv. Mater. 2007, 19, 2818. https://doi.org/10.1002/adma.200602975
- Suslick, K. S.; Choe, S. B.; Chicowlas, A. A.; Grinstaff, M. W. Nature 1991, 353, 414. https://doi.org/10.1038/353414a0
- Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; John Wiley & Sons: New York, 1959.
Cited by
- Zinc-oxide nanorod/copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor vol.65, pp.10, 2014, https://doi.org/10.3938/jkps.65.1653
- Methane gas sensing at relatively low operating temperature by hydrothermally prepared SnO2 nanorods vol.17, pp.7, 2015, https://doi.org/10.1007/s11051-015-3089-z
- Fabrication and Characterization of CuO Thin Film/ZnO Nanorods Heterojunction Structure for Efficient Detection of NO Gas vol.28, pp.1, 2018, https://doi.org/10.3740/MRSK.2018.28.1.32
- Facile Synthesis of ZnO Nanofoam on ZnO Nanowire for Hydrogen Gas Detection vol.8, pp.None, 2011, https://doi.org/10.2174/2210681208666180927103948
- Room temperature SO2 and H2 gas sensing using hydrothermally grown GO-ZnO nanorod composite films vol.7, pp.6, 2011, https://doi.org/10.1088/2053-1591/ab9ae7
- New Comparative Study of High-Sensitivity H2Gas Sensors at Room Temperature Based on ZnO NWs Grown on Si and PS/Si Substrates without Catalyst by Wet Thermal Evaporation Method vol.2114, pp.1, 2011, https://doi.org/10.1088/1742-6596/2114/1/012087