DOI QR코드

DOI QR Code

Thickness Dependence of Size and Arrangement in Anodic TiO2 Nanotubes

  • Kim, Sun-Mi (Department of Chemical Engineering, Inha University) ;
  • Lee, Byung-Gun (Department of Chemical Engineering, Inha University) ;
  • Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
  • Received : 2011.07.17
  • Accepted : 2011.08.10
  • Published : 2011.10.20

Abstract

The degree of self-assembly and the size variation of nanotubular structures in anodic titanium oxide prepared by the anodization of titanium in ethylene glycol containing 0.25 wt % $NH_4F$ at 40 V were investigated as a function of anodization time. We found that the degree of self-assembly and the size of the nanotubes were strongly dependent on thickness deviation and thus indirectly on anodization time, as the thickness deviation was caused by the dissolution of the topmost tubular structures at local areas during long anodization. A large deviation in thickness led to a large deviation in the size and number of nanotubes per unit area. The dissolution primarily occurred at the bottoms of the nanotubes ($D_{bottom}$) in the initial stage of anodization (up to 6 h), which led to the growth of nanotubes. Dissolution at the tops ($D_{top}$) was accompanied by $D_{bottom}$ after the formed structures contacted the electrolyte after 12 h, generating the thickness deviation. After extremely long anodization (here, 70 h), $D_{top}$ was the dominant mode due to increase in pH, meaning that there was insufficient driving force to overcome the size distribution of nanotubes at the bottom. Thus, the nanotube array became disorder in this regime.

Keywords

References

  1. Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Adv. Mater. 2000, 12, 582. https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
  2. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Science 2002, 296, 1997. https://doi.org/10.1126/science.1071210
  3. Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Chem. Mater. 1997, 9, 2544. https://doi.org/10.1021/cm970268y
  4. Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 346 https://doi.org/10.1038/30694
  5. Grimes, C. A. J. Mater. Chem. 2007, 17, 1451. https://doi.org/10.1039/b701168g
  6. Macak, J. M.; Schmuki, P. Electrochim. Acta 2006, 52, 1258. https://doi.org/10.1016/j.electacta.2006.07.021
  7. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Schmuki, P. Electrochem. Commun. 2005, 7, 1133. https://doi.org/10.1016/j.elecom.2005.08.013
  8. Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Ed. 2005, 44, 2100. https://doi.org/10.1002/anie.200462459
  9. Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Angew. Chem. Int. Ed. 2005, 44, 7463. https://doi.org/10.1002/anie.200502781
  10. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Sol Energy Mater. Sol. Cells 2006, 90, 2011. https://doi.org/10.1016/j.solmat.2006.04.007
  11. Di Quarto, F.; Di Paola, A.; Sunseri, C. Electrochim. Acta 1981, 26, 1177. https://doi.org/10.1016/0013-4686(81)85095-5
  12. Guo, Y.; Quan, X.; Lu, N.; Zhao, H.; Chen, S. Environ. Sci. Technol. 2007, 41, 4422. https://doi.org/10.1021/es062546c
  13. Hahn, R.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2007, 9, 947. https://doi.org/10.1016/j.elecom.2006.11.037
  14. Mukherjee, N.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. J. Mater. Res. 2003, 18, 2296. https://doi.org/10.1557/JMR.2003.0321
  15. Allam, N. K.; Feng, X. J.; Grimes, C. A. Chem. Mater. 2008, 20, 6477. https://doi.org/10.1021/cm801472y
  16. Ueno, K.; Abe, S.; Onoki, R.; Saiki, K. J. Appl. Phys. 2005, 98, 114503. https://doi.org/10.1063/1.2138807
  17. Wei, W.; Macák, J. M.; Schmuki, P. Electrochem. Commun. 2008, 10, 428. https://doi.org/10.1016/j.elecom.2008.01.004
  18. Choi, J.; Lim, J. H.; Lee, J.; Kim, K. J. Nanotechnology 2007, 18.
  19. Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Electrochem. Commun. 2005, 7, 97. https://doi.org/10.1016/j.elecom.2004.11.012
  20. Diggle, J. W.; Downie, T. C.; Goulding, C. W. Chem. Rev. 1969, 69, 365. https://doi.org/10.1021/cr60259a005
  21. Jessensky, O.; Müller, F.; Gösele, U. Appl. Phys. Lett. 2009, 72, 1173.
  22. Masuda; Fukuda, K. Science 1995, 268, 1466. https://doi.org/10.1126/science.268.5216.1466
  23. O'sullivan, J. P.; Wood, G. C. Proc. R. Soc. A 1970, 317, 511. https://doi.org/10.1098/rspa.1970.0129
  24. Jessensky, O.; Müller, F.; Gosele, U. J. Electrochem. Soc. 1998, 145, 3735. https://doi.org/10.1149/1.1838867
  25. Thompson, G. E.; Xu, Y.; Skeldon, P.; Shimizu, K.; Han, S. H.; Wood, G. C. Philos. Mag. B 1986, 55, 651.
  26. Choi, J.; Wehrspohn, R. B.; Lee, J.; Gosele, U. Electrochim. Acta 2004, 49, 2645. https://doi.org/10.1016/j.electacta.2004.02.015
  27. Nguyen, Q. A. S.; Bhargava, Y. V.; Devine, T. M. J. Electrochem. Soc. 2009, 156, 3. https://doi.org/10.1149/1.3055397
  28. Grimes, C. A.; Mor, G. K. Springer 2009; pp 1-66.
  29. Diggle, J. W.; Downie, T. C.; Coulding, C. W. Chem. Rev. 1969, 69, 365. https://doi.org/10.1021/cr60259a005
  30. Yasuda, K.; Macqk, J. M.; Berger, S.; Ghicov, A.; Schmuki, P. J. Electrochem. Soc. 2007, 154, 9.
  31. Sun, L.; Zhang, S. Sun, X. W.; He, X. J. Electroanal. Chem. 2009, 637, 6. https://doi.org/10.1016/j.jelechem.2009.09.023
  32. Meng, X.; Lee, T. Y.; Chen, H.; Shin, D. W.; Kwon, K. W.; Kwon, S. J.; Yoo, J. B. J. Electrochem. Soc. 2010, 10, 4259.
  33. Sulka, G. D.; Kapusta-Kolodziej, J.; Brzozka, A.; Jaskula, M. Electrochim. Acta 2010, 55, 4359. https://doi.org/10.1016/j.electacta.2009.12.053
  34. Berger, S.; Hahn, R.; Roy, P.; Schmuki, P. Phys. Status Solidi B (b) 2010, 247, 2424. https://doi.org/10.1002/pssb.201046373
  35. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, 6.
  36. Tang, X.; Li, D. J. Phys. Chem. C 2009, 113, 7107. https://doi.org/10.1021/jp900311d
  37. Berger, S.; Kunze, J.; Schmuki, P.; LeClere, D.; Valota, A. T.; Skeldon, P.; Thompson, G. E. Electrochim. Acta 2009, 54, 5942. https://doi.org/10.1016/j.electacta.2009.05.064
  38. Lee, B. G.; Hong, S. Y.; Yoo, J. E.; Choi, J. Appl. Surf. Sci. 2010, 257, 7190.
  39. Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. Nano Lett. 2002, 2, 7.
  40. Raja, K. S.; Gandhi, T.; Misra, M. Electrochem. Commun. 2007, 9, 1069. https://doi.org/10.1016/j.elecom.2006.12.024
  41. Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Ed. 2005, 44, 2100. https://doi.org/10.1002/anie.200462459
  42. Su, Z.; Zhou, W. Adv. Mater. 2008, 20, 3663. https://doi.org/10.1002/adma.200800845
  43. Parkhutik, P.; Shershulsky, V. I. J. Phys. D 1992, 25, 1258. https://doi.org/10.1088/0022-3727/25/8/017

Cited by

  1. The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism vol.2, pp.24, 2014, https://doi.org/10.1039/c4ta00871e