DOI QR코드

DOI QR Code

Confined Pt and CoFe2O4 Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity

  • Received : 2011.07.10
  • Accepted : 2011.08.22
  • Published : 2011.10.20

Abstract

Confined Pt and $CoFe_2O_4$ nanoparticles (NPs) in a mesoporous core/shell silica microsphere, Pt-$CoFe_2O_4$@meso-$SiO_2$, were prepared using a bi-functional linker molecule. A large number of Pt NPs in Pt-$CoFe_2O_4$@meso-$SiO_2$, ranging from 5 to 8 nm, are embedded into the shell and some of them are in close contact with $CoFe_2O_4$ NPs. The hydrogenation of cyclohexene over the Pt-$CoFe_2O_4$@meso-$SiO_2$ microsphere at $25^{\circ}C$ and 1 atm of $H_2$ yields cyclohexane as a major product. In addition, it gives oxygenated products. Control experiments with $^{18}O$-labelled water and acetone suggest that surface-bound oxygen atoms in $CoFe_2O_4$ are associated with the formation of the oxygenated products. This oxidation reaction is operative only if $CoFe_2O_4$ and Pt NPs are in close contact. The Pt-$CoFe_2O_4$@meso-$SiO_2$ catalyst is separated simply by a magnet, which can be re-used without affecting the catalytic efficiency.

Keywords

References

  1. Kim, Y.-W.; Kim, M.-J. Bull. Korean Chem. Soc. 2010, 31, 1368. https://doi.org/10.5012/bkcs.2010.31.5.1368
  2. Costi, R.; Saunders, A. E.; Banin, U. Angew. Chem. Int. Ed. 2010, 49, 4878. https://doi.org/10.1002/anie.200906010
  3. Ojeda, M.; Iglesia, E. Angew. Chem. Int. Ed. 2009, 48, 4800. https://doi.org/10.1002/anie.200805723
  4. Guo, S.; Dong, S.; Wang, E. J. Phys. Chem. C 2008, 112, 2389. https://doi.org/10.1021/jp0772629
  5. Yoo, J. W.; Lee, S.-M.; Kim, H.-T.; El-Sayed, M. A. Bull. Korean Chem. Soc. 2004, 25, 843. https://doi.org/10.5012/bkcs.2004.25.6.843
  6. Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037. https://doi.org/10.1021/cr0200116
  7. Mager-Maury, C.; Bonnard, G.; Chizallet, C.; Sautet, P.; Raybaud, P. ChemCatChem 2011, 3, 200. https://doi.org/10.1002/cctc.201000324
  8. Kaden, W. E.; Wu, T.; Kunkel, W. A.; Anderson, S. L. Science 2009, 326, 826. https://doi.org/10.1126/science.1180297
  9. Grybos, R.; Benco, L.; Bucko, T.; Hafner, J. J. Chem. Phys. 2009, 130, 104503/1.
  10. Weerachawanasak, P.; Praserthdam, P.; Arai, M.; Panpranot, J. J. Mol. Catal. A: Chem. 2008, 279, 133. https://doi.org/10.1016/j.molcata.2007.10.006
  11. Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Nature 2008, 454, 981. https://doi.org/10.1038/nature07194
  12. Haruta, M. Catal. Today 1997, 36, 153. https://doi.org/10.1016/S0920-5861(96)00208-8
  13. Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. https://doi.org/10.1021/ja00469a029
  14. Panagiotopoulou, P.; Kondarides, D. I.; Verykios, X. E. J. Phys. Chem. C 2011, 115, 1220. https://doi.org/10.1021/jp106538z
  15. Huang, H.; Leung, D. Y. C. ACS Catal. 2011, 1, 348. https://doi.org/10.1021/cs200023p
  16. Huang, S.-Y.; Ganesan, P.; Park, S.; Popov, B. N. J. Am. Chem. Soc. 2009, 131, 13898. https://doi.org/10.1021/ja904810h
  17. Lopez-Sanchez, J. A.; Lennon, D. Appl. Catal., A 2005, 291, 230. https://doi.org/10.1016/j.apcata.2005.01.048
  18. Li, Y.; Xu, B.; Fan, Y.; Feng, N.; Qiu, A.; He, J. M. J.; Yang, H.; Chen, Y. J. Mol. Catal. A: Chem. 2004, 216, 107. https://doi.org/10.1016/j.molcata.2004.02.007
  19. Sohn, J. R.; Lee, J. S. Bull. Korean Chem. Soc. 2003, 24, 159. https://doi.org/10.5012/bkcs.2003.24.2.159
  20. Sharma, S.; Hegde, M. S. J. Chem. Phys. 2009, 130, 114706/1.
  21. Miedziak, P. J.; Tang, Z.; Davies, T. E.; Enache, D. I.; Bartley, J. K.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Taylor, S. H.; Hutchings, G. J. J. Mater. Chem. 2009, 19, 8619. https://doi.org/10.1039/b911102f
  22. Azad, A.-M.; Duran, M. J.; McCoy, A. K.; Abraham, M. A. Appl. Catal., A 2007, 332, 225. https://doi.org/10.1016/j.apcata.2007.08.029
  23. Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C. J. Am. Chem. Soc. 2005, 127, 18010. https://doi.org/10.1021/ja056102c
  24. Roh, H.-S.; Jun, K.-W.; Baek, S.-C.; Park, S.-E. Bull. Korean Chem. Soc. 2002, 23, 799. https://doi.org/10.5012/bkcs.2002.23.6.799
  25. Wong, K.; Zeng, Q. H.; Yu, A. B. J. Phys. Chem. C 2011, 115, 4656. https://doi.org/10.1021/jp1108043
  26. Routray, K.; Zhou, W.; Kiely, C. J.; Wachs, I. E. ACS Catal. 2011, 1, 54. https://doi.org/10.1021/cs1000569
  27. Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Science 2008, 321, 1331. https://doi.org/10.1126/science.1159639
  28. Lee, J.-K.; Kim, D.-W.; Cheong, M.-S.; Lee, H.-J.; Cho, B.-W.; Kim, H.-S.; Mukherjee, D. Bull. Korean Chem. Soc. 2010, 31, 2195. https://doi.org/10.5012/bkcs.2010.31.8.2195
  29. Corma, A.; Serna, P. Science 2006, 313, 332. https://doi.org/10.1126/science.1128383
  30. Chen, C.-S.; Chen, H.-W.; Cheng, W.-H. Appl. Catal., A 2003, 248, 117. https://doi.org/10.1016/S0926-860X(03)00156-X
  31. Shon, J.-K.; Park, J.-N.; Hwang, S.-H.; Jin, M.; Moon, K.-Y.; Boo, J.-H.; Han, T.-H.; Kim, J.-M. Bull. Korean Chem. Soc. 2010, 31, 415. https://doi.org/10.5012/bkcs.2010.31.02.415
  32. Santos, V. P.; Carabineiro, S. A. C.; Tavares, P. B.; Pereira, M. F. R.; Orfao, J. J. M.; Figueiredo, J. L. Appl. Catal., B 2010, 99, 198. https://doi.org/10.1016/j.apcatb.2010.06.020
  33. Min, M.-K.; Kim, J.-H.; Kim, H.-S. Bull. Korean Chem. Soc. 2010, 31, 151. https://doi.org/10.5012/bkcs.2010.31.01.151
  34. Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 11302. https://doi.org/10.1021/ja9047653
  35. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405.
  36. Rodriguez, J. A.; Graciani, J.; Evans, J.; Park, J. B.; Yang, F.; Stacchiola, D.; Senanayake, S. D.; Ma, S.; Pérez, M.; Liu, P.; Sanz, J. F.; Hrbek, J. Angew. Chem. Int. Ed. 2009, 48, 8047. https://doi.org/10.1002/anie.200903918
  37. Burch, R. PCCP 2006, 8, 5483. https://doi.org/10.1039/b607837k
  38. Byun, I.-S.; Choi, O.-L.; Choi, J.-G.; Lee, S.-H. Bull. Korean Chem. Soc. 2002, 23, 1513. https://doi.org/10.5012/bkcs.2002.23.11.1513
  39. Sakurai, H.; Ueda, A.; Kobayashi, T.; Haruta, M. Chem. Commun. 1997, 271.
  40. Hoxha, F.; Schmidt, E.; Mallat, T.; Schimmoeller, B.; Pratsinis, S. E.; Baiker, A. J. Catal. 2011, 278, 94. https://doi.org/10.1016/j.jcat.2010.11.025
  41. Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Science 2010, 330, 74. https://doi.org/10.1126/science.1195055
  42. Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A. U.; Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Science 2010, 329, 1633. https://doi.org/10.1126/science.1192449
  43. Liu, H.; Jiang, T.; Han, B.; Liang, S.; Zhou, Y. Science 2009, 326, 1250. https://doi.org/10.1126/science.1179713
  44. Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. Surf. Interface Anal. 2006, 38, 215. https://doi.org/10.1002/sia.2180
  45. Alfredsson, M.; Catlow, C. R. A. PCCP 2002, 4, 6100. https://doi.org/10.1039/b204680f
  46. Venezia, A. M.; Rossi, A.; Duca, D.; Martorana, A.; Deganello, G. Appl. Catal., A 1995, 125, 113. https://doi.org/10.1016/0926-860X(94)00286-X
  47. Sankar, G.; Rao, C. N. R.; Rayment, T. J. Mater. Chem. 1991, 1, 299. https://doi.org/10.1039/jm9910100299
  48. Xu, L.; Ma, Y.; Zhang, Y.; Jiang, Z.; Huang, W. J. Am. Chem. Soc. 2009, 131, 16366. https://doi.org/10.1021/ja908081s
  49. Wang, C.; Daimon, H.; Sun, S. Nano Lett. 2009, 9, 1493. https://doi.org/10.1021/nl8034724
  50. Kim, Y. N.; Lee, E. K.; Lee, Y. B.; Shim, H.; Hur, N. H.; Kim, W. S. J. Am. Chem. Soc. 2004, 126, 8672. https://doi.org/10.1021/ja047949w
  51. Bonanni, S.; Ait-Mansour, K.; Brune, H.; Harbich, W. ACS Catal. 2011, 1, 385. https://doi.org/10.1021/cs200001y
  52. Fu, Q.; Li, W.-X.; Yao, Y.; Liu, H.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X. Science 2010, 328, 1141. https://doi.org/10.1126/science.1188267
  53. Gonzalez, J. C.; Hernandez, J. C.; Lopez-Haro, M.; del Rio, E.; Delgado, J. J.; Hungria, A. B.; Trasobares, S.; Bernal, S.; Midgley, P. A.; Calvino, J. J. Angew. Chem. Int. Ed. 2009, 48, 5313. https://doi.org/10.1002/anie.200901308
  54. Carrier, X.; Marceau, E.; Carabineiro, H.; Rodriguez-Gonzalez, V.; Che, M. PCCP 2009, 11, 7527. https://doi.org/10.1039/b822969d
  55. Rodriguez, J. A.; Hrbek, J. Acc. Chem. Res. 1999, 32, 719. https://doi.org/10.1021/ar9801191
  56. Dapurkar, S. E.; Shervani, Z.; Yokoyama, T.; Ikushima, Y.; Kawanami, H. Catal. Lett. 2009, 130, 42. https://doi.org/10.1007/s10562-009-9859-4
  57. Lucchesi, C.; Inasaki, T.; Miyamura, H.; Matsubara, R.; Kobayashi, S. Adv. Synth. Catal. 2008, 350, 1996. https://doi.org/10.1002/adsc.200800319
  58. Hughes, M. D.; Xu, Y.-J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Nature 2005, 437, 1132. https://doi.org/10.1038/nature04190
  59. Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362. https://doi.org/10.1126/science.1120560
  60. Polshettiwar, V.; Varma, R. S. Org. Biomol. Chem. 2009, 7, 37. https://doi.org/10.1039/b817669h
  61. Campelo, J. M.; Luna, D.; Luque, R.; Marinas, J. M.; Romero, A. A. ChemSusChem 2009, 2, 18. https://doi.org/10.1002/cssc.200800227
  62. Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y. Adv. Mater. 2007, 19, 33. https://doi.org/10.1002/adma.200600674
  63. Yoon, T.-J.; Lee, W.; Oh, Y.-S.; Lee, J.-K. New J. Chem. 2003, 27, 227. https://doi.org/10.1039/b209391j
  64. Lee, K. R.; Kim, S.; Kang, D. H.; Lee, J. I.; Lee, Y. J.; Kim, W. S.; Cho, D.-H.; Lim, H. B.; Kim, J.; Hur, N. H. Chem. Mater. 2008, 20, 6738. https://doi.org/10.1021/cm802335r
  65. Buchel, G.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K. Adv. Mater. 1998, 10, 1036. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1036::AID-ADMA1036>3.0.CO;2-Z
  66. Pasricha, R.; Bala, T.; Biradar, A. V.; Umbarkar, S.; Sastry, M. Small 2009, 5, 1467. https://doi.org/10.1002/smll.200801863
  67. Olivas, A.; Jerdev, D. I.; Koel, B. E. J. Catal. 2004, 222, 285.
  68. Concepcion, P.; Corma, A.; Silvestre-Albero, J.; Franco, V.; Chane-Ching, J. Y. J. Am. Chem. Soc. 2004, 126, 5523. https://doi.org/10.1021/ja031768x
  69. Ammari, F.; Lamotte, J.; Touroude, R. J. Catal. 2004, 221, 32. https://doi.org/10.1016/S0021-9517(03)00290-2
  70. von Arx, M.; Mallat, T.; Baiker, A. J. Mol. Catal. A: Chem. 1999, 148, 275. https://doi.org/10.1016/S1381-1169(99)00162-4
  71. Kwak, J. H.; Hu, J.; Mei, D.; Yi, C.-W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Science 2009, 325, 1670. https://doi.org/10.1126/science.1176745
  72. Tsuji, H.; Hattori, H. ChemPhysChem 2004, 5, 733. https://doi.org/10.1002/cphc.200400009
  73. Martin, D.; Duprez, D. J. Phys. Chem. B 1997, 101, 4428. https://doi.org/10.1021/jp970050z

Cited by

  1. Ordered mesoporous CoFe2O4 nanoparticles: molten-salt-assisted rapid nanocasting synthesis and the effects of calcining heating rate vol.38, pp.7, 2014, https://doi.org/10.1039/c4nj00235k
  2. A Highly Stable and Magnetically Recyclable Nanocatalyst System: Mesoporous Silica Spheres Embedded with FeCo/Graphitic Shell Magnetic Nanoparticles and Pt Nanocatalysts vol.10, pp.12, 2015, https://doi.org/10.1002/asia.201500773
  3. Au nanoparticle@hollow mesoporous carbon with FeCo/graphitic shell nanoparticls as a magnetically recyclable yolk–shell nanocatalyst for catalytic reduction of nitroaromatics vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-25795-w
  4. Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity vol.4, pp.37, 2011, https://doi.org/10.1039/c6ta07025f