DOI QR코드

DOI QR Code

CO-Tolerant PtMo/C Fuel Cell Catalyst for H2 Oxidation

  • Bang, Jin-Ho (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kim, Ha-Suck (Department of Energy System Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
  • Received : 2011.07.10
  • Accepted : 2011.08.15
  • Published : 2011.10.20

Abstract

CO-tolerant PtMo/C alloy electrocatalyst was prepared by a colloidal method, and its electrocatalytic activity toward CO oxidation was investigated. Electrochemical study revealed that the alloy catalyst significantly enhanced catalytic activity toward the electro-oxidation of CO compared to Pt/C counterpart. Cyclic voltammetry suggested that Mo plays an important role in promoting CO electro-oxidation by facilitating the formation of active oxygen species. The effect of Mo on the electronic structure of Pt was investigated using X-ray absorption spectroscopy to elucidate the synergetic effect of alloying. Our in-depth spectroscopic analysis revealed that CO is less strongly adsorbed on PtMo/C catalyst than on Pt/C catalyst due to the modulation of the electronic structure of Pt d-band. Our investigation shows that the enhanced CO electrooxidation in PtMo alloy electrocatalyst is originated from two factors; one comes from the facile formation of active oxygen species, and the other from the weak interaction between Pt and CO.

Keywords

References

  1. Sundmacher, K. Ind. Eng. Chem. Res. 2010, 49, 10159-10182. https://doi.org/10.1021/ie100902t
  2. Wagner, F. T.; Lakshmanan, B.; Mathias, M. F. J. Phys. Chem. Lett. 2010, 1, 2204-2219. https://doi.org/10.1021/jz100553m
  3. Palo, D. R.; Dagle, R. A.; Holladay, J. D. Chem. Rev. 2007, 107, 3992-4021. https://doi.org/10.1021/cr050198b
  4. Igarashi, H.; Fujino, T.; Watanabe, M. J. Electroanal. Chem. 1995, 391, 119-123. https://doi.org/10.1016/0022-0728(95)03914-3
  5. Markoviae, N. M.; Grgur, B. N.; Lucas, C. A.; Ross, P. N. J. Phys. Chem. B 1999, 103, 487-495. https://doi.org/10.1021/jp983177c
  6. Antolini, E. Mater. Chem. Phys. 2003, 78, 563-573. https://doi.org/10.1016/S0254-0584(02)00389-9
  7. Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1994, 98, 617-625. https://doi.org/10.1021/j100053a042
  8. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. 1995, 99, 8945-8949. https://doi.org/10.1021/j100022a002
  9. Grgur, B. N.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. B 1998, 102, 2494-2501. https://doi.org/10.1021/jp972692s
  10. Liu, Z.; Hu, J. E.; Wang, Q.; Gaskell, K.; Frenkel, A. I.; Jackson, G. S.; Eichhorn, B. J. Am. Chem. Soc. 2009, 131, 6924-6925. https://doi.org/10.1021/ja901303d
  11. Morimoto, Y.; Yeager, E. B. J. Electroanal. Chem. 1998, 441, 77- 81. https://doi.org/10.1016/S0022-0728(97)00312-4
  12. Mu, R.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y.; Jiang, Z.; Zhang, S.; Tan, D.; Bao, X. J. Am. Chem. Soc. 2011, 133, 1978-1986. https://doi.org/10.1021/ja109483a
  13. Shim, J.; Lee, C.-R.; Lee, H.-K.; Lee, J.-S.; Cairns, E. J. J. Power Sources 2001, 102, 172-177. https://doi.org/10.1016/S0378-7753(01)00817-5
  14. Yano, H.; Ono, C.; Shiroishi, H.; Okada, T. Chem. Commun. 2005, 1212-1214.
  15. Liang, Y.; Zhang, H.; Tian, Z.; Zhu, X.; Wang, X.; Yi, B. J. Phys. Chem. B 2006, 110, 7828-7834. https://doi.org/10.1021/jp0602732
  16. Martinez-Huerta, M. V.; Rodriguez, J. L.; Tsiouvaras, N.; Peña, M. A.; Fierro, J. L. G.; Pastor, E. Chem. Mater. 2008, 20, 4249- 4259. https://doi.org/10.1021/cm703047p
  17. Wang, D.; Subban, C. V.; Wang, H.; Rus, E.; DiSalvo, F. J.;Abruna, H. D. J. Am. Chem. Soc. 2010, 132, 10218-10220. https://doi.org/10.1021/ja102931d
  18. Yamazaki, S.-I.; Yao, M.; Siroma, Z.; Ioroi, T.; Yasuda, K. J. Phys. Chem. C 2010, 114, 21856-21860. https://doi.org/10.1021/jp107887x
  19. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. 1995, 99, 16757-16767. https://doi.org/10.1021/j100045a042
  20. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. 1995, 99, 8290-8301. https://doi.org/10.1021/j100020a063
  21. Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 275- 283. https://doi.org/10.1016/S0022-0728(75)80262-2
  22. Bang, J. H.; Han, K.; Skrabalak, S. E.; Kim, H.; Suslick, K. S. J. Phys. Chem. C 2007, 111, 10959-10964. https://doi.org/10.1021/jp071624v
  23. Grgur, B. N.; Markovic, N. M.; Ross, P. N. J. Electrochem. Soc. 1999, 146, 1613-1619. https://doi.org/10.1149/1.1391815
  24. Grgur, B. N.; Zhuang, G.; Markovic, N. M.; Ross, P. N. J. Phys. Chem. B 1997, 101, 3910-3913.
  25. Mukerjee, S.; Lee, S. J.; Ticianelli, E. A.; McBreen, J.; Grgur, B. N.; Markovic, N. M.; Ross, P. N.; Giallombardo, J. R.; De Castro, E. S. Electrochem. Solid-State Lett. 1999, 2, 12-15. https://doi.org/10.1149/1.1390718
  26. Mukerjee, S.; McBreen, J. J. Electrochem. Soc. 1999, 146, 600- 606. https://doi.org/10.1149/1.1391650
  27. Dupont, C.; Jugnet, Y.; Loffreda, D. J. Am. Chem. Soc. 2006, 128, 9129-9136. https://doi.org/10.1021/ja061303h
  28. Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Bonnemann, H. J. Electrochem. Soc. 1998, 145, 925-931. https://doi.org/10.1149/1.1838368
  29. Lawson, D. R.; Whiteley, L. D.; Martin, C. R.; Szentirmay, M. N.; Song, J. I. J. Electrochem. Soc. 1988, 135, 2247-2253. https://doi.org/10.1149/1.2096247
  30. Min, M.-K.; Cho, J.; Cho, K.; Kim, H. Electrochim. Acta 2000, 45, 4211-4217. https://doi.org/10.1016/S0013-4686(00)00553-3
  31. Blyholder, G. J. Phys. Chem. 1964, 68, 2772-2777. https://doi.org/10.1021/j100792a006
  32. Ray, N. K.; Anderson, A. B. Sur. Sci. 1982, 119, 35-45. https://doi.org/10.1016/0039-6028(82)90185-6
  33. Russell, A. E.; Rose, A. Chem. Rev. 2004, 104, 4613-4636. https://doi.org/10.1021/cr020708r
  34. Alayoglu, S.; Zavalij, P.; Eichhorn, B.; Wang, Q.; Frenkel, A. I.; Chupas, P. ACS Nano 2009, 3, 3127-3137. https://doi.org/10.1021/nn900242v
  35. Mcbreen, J.; Mukerjee, S. J. Electrochem. Soc. 1995, 142, 3399- 3404. https://doi.org/10.1149/1.2049993
  36. Mukerjee, S.; Urian, R. C. Electrochim. Acta 2002, 47, 3219- 3231. https://doi.org/10.1016/S0013-4686(02)00242-6