References
- Kim, Y. J. Am. Chem. Soc. 1996, 118, 1522. https://doi.org/10.1021/ja953175v
- Scherer, G.; Limbach, H.-H. J. Am. Chem. Soc. 1989, 111, 5946. https://doi.org/10.1021/ja00197a068
- Scherer, G.; Limbach, H.-H. J. Am. Chem. Soc. 1994, 116, 1320.
- Schlabach, M.; Limbach, H.-H.; Bunnenberg, E.; Shu, A. Y. L.; Tolf, B.-R.; Djerassi, C. J. Am. Chem. Soc. 1993, 115.
- Gerritzen, D.; Limbach, H.-H. J. Am. Chem. Soc. 1984, 106, 869. https://doi.org/10.1021/ja00316a007
- Fu, A.-P.; Li, H.-L.; Du, D.-M.; Zhou, Z.-Y. Chem. Phys. Lett. 2003, 382, 332. https://doi.org/10.1016/j.cplett.2003.10.070
- Kim, Y.; Lim, S.; Kim, H.-J.; Kim, Y. J. Phys. Chem. A 1999, 103, 617. https://doi.org/10.1021/jp983636+
- Lim, J.-H.; Lee, E. K.; Kim, Y. J. Phys. Chem. A 1997, 101, 2233. https://doi.org/10.1021/jp9626226
- Kim, Y. J. Phys. Chem. A 1998, 102, 3025. https://doi.org/10.1021/jp9733072
- Kim, Y.; Lim, S.; Kim, Y. J. Phys. Chem. A 1999, 103, 6632. https://doi.org/10.1021/jp990398p
- Podolyan, Y.; Gorb, L.; Leszczynski, J. J. Phys. Chem. A 2002, 106, 12103. https://doi.org/10.1021/jp021666d
- Hrouda, V.; Florian, J.; Polasek, M.; Hobza, P. J. Phys. Chem.1994, 98, 4742. https://doi.org/10.1021/j100068a042
- Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe, K. J. Chem. Phys. 1999, 110, 11906. https://doi.org/10.1063/1.479130
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Rob, M. A.; Cheeseman, J. R.; Jr., J. A. M.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc.: Wallingford, CT, 2003.
- Fast, P. L.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 6111. https://doi.org/10.1021/jp000408i
- Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 4786. https://doi.org/10.1021/jp049253v
- Fast, P. L.; Corchado, J. C.; Sánchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 5129. https://doi.org/10.1021/jp9903460
- Zhao, Y.; Rodger, J. M.; Lynch, B. J.; Fast, P. L.; Pu, J.; Chuang, Y.-Y.; Truhlar, D. G. Multilevel 4.0, University of Minnesota: Minneapolis, MN, 2004.
- Zhao, Y.; Truhlar, D. G. Mlgauss 2.0, University of Minnesota: Minneapolis, MN, 2007.
- Xu, X.; Alecu, I. M.; Truhlar, D. G. J. Chem. Theory Comput. 2011, 7, 1667. https://doi.org/10.1021/ct2001057
- Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926. https://doi.org/10.1063/1.1386416
- Antony, J.; Grimme, S. PCCP 2006, 8, 5287. https://doi.org/10.1039/b612585a
- Hargis, J. C.; Vohringer-Martinez, E.; Woodcock, H. L.; Toro- Labbé, A.; Schaefer, H. F. J. Phys. Chem. A 2011, 115, 2650. https://doi.org/10.1021/jp111834v
- Jurecka, P.; Hobza, P. Chem. Phys. Lett. 2002, 365, 89. https://doi.org/10.1016/S0009-2614(02)01423-9
- Jurecka, P.; Sponer, J.; Cern, J.; Hobza, P. PCCP 2006, 8, 1985. https://doi.org/10.1039/b600027d
- Sponer, J.; Hobza, P. J. Phys. Chem. A 2000, 104, 4592. https://doi.org/10.1021/jp9943880
- Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415. https://doi.org/10.1021/ct049851d
- Fogarasi, G. J. Mol. Struct. 2010, 978, 257. https://doi.org/10.1016/j.molstruc.2010.02.065
- Zhang, Q.; Bell, R.; Truong, T. N. J. Phys. Chem. 1995, 99, 592. https://doi.org/10.1021/j100002a022
Cited by
- Solvent Dependence of Double Proton Transfer in the Formic Acid–Formamidine Complex: Path Integral Molecular Dynamics Investigation vol.121, pp.39, 2017, https://doi.org/10.1021/acs.jpca.7b07010
- Effects of Positive and Negative Ionization on Prototropy in Pyrimidine Bases: An Unusual Case of Isocytosine vol.122, pp.39, 2018, https://doi.org/10.1021/acs.jpca.8b07539
- The Role of Proton Transfer on Mutations vol.7, pp.None, 2011, https://doi.org/10.3389/fchem.2019.00536
- Synthesis, microwave spectra, x-ray structure, and high-level theoretical calculations for formamidinium formate vol.150, pp.9, 2011, https://doi.org/10.1063/1.5081683