DOI QR코드

DOI QR Code

Poly(dimethylsiloxane) Mini-disk Extraction

  • Cha, Eun-Ju (Department of Chemistry, Seoul Women's University) ;
  • Lee, Dong-Sun (Department of Chemistry, Seoul Women's University)
  • Received : 2011.06.26
  • Accepted : 2011.08.06
  • Published : 2011.10.20

Abstract

A novel sampling method of the headspace poly(dimethylsiloxane) (PDMS) mini-disk extraction (HS-PDE) was developed, optimized, validated and applied for the GC/MS analysis of spices flavors. A prototype PDMS mini-disk (8 mm outer diameter, 0.157 mm thickness, 9.4 mg weight) has been designed and fabricated as a sorption device. The technique uses a small PDMS mini-disk and very small volume of organic solvent and less sample size than the solvent extraction. This new HS-PDE method is very simple to use, inexpensive, rapid, requires less labor. Linearities of calibration curves for ${\alpha}$-pinene, ${\beta}$-pinene, limonene and ${\gamma}$-terpinene by HS-PDE combined with GC/MS were excellent having $r^2$ values greater than 0.99 at the dynamic range of 6.06~3500 ng/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) showed very low values. This method exhibited good precision and accuracy. The overall extraction efficiency of this method was evaluated by using partition coefficients ($K_p$) and concentration factors (CF) for several characteristic components from nutmeg and mace. Partition coefficients were in the range from $2.04{\times}10^4$ to $4.42{\times}10^5$, while CF values were 0.88-15.03. HS-PDE was applied successfully for the analysis of flavors compositions from nutmeg, mace and cumin. The HS-PDE method is a very promising sampling technique for the characterization of volatile flavors.

Keywords

References

  1. Brook, M. A. Silicon in Organic Organometallic and Polymer Chemistry; John Wiley & Sons: New York, 2000; pp 171-608.
  2. Rochow, E. G. J. Am. Chem. Soc. 1945, 67, 963. https://doi.org/10.1021/ja01222a026
  3. Belardi, R. G.; Pawliszyn, J. Water Pollut. Res. J. Can. 1989, 24, 179.
  4. Arthur, C. L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145. https://doi.org/10.1021/ac00218a019
  5. Lokhnauth, J. K. Dissertation of Ph.D.; Seton Hall University, 2005; pp 9-14.
  6. Steffen, A.; Pawliszyn, J. J. Agric. Food Chem. 1996, 44, 2187. https://doi.org/10.1021/jf950727k
  7. Bicchi, C.; Drigo, S.; Rubiolo, P. J. Chromatogr. A 2000, 892, 469. https://doi.org/10.1016/S0021-9673(00)00231-4
  8. Shellie, R.; Marriott, P.; Cornwell, C. J. Sep. Sci. 2001, 24, 823. https://doi.org/10.1002/1615-9314(20011101)24:10/11<823::AID-JSSC823>3.0.CO;2-H
  9. Kim, N. S., Lee, D. S. J. Chromatogr. A 2002, 982, 31. https://doi.org/10.1016/S0021-9673(02)01445-0
  10. Lee, S. N.; Kim, N. S.; Lee, D. S. Anal. Bioanal. Chem. 2003, 377, 749. https://doi.org/10.1007/s00216-003-2163-z
  11. Yoo, Z. W.; Kim, N. S.; Lee, D. S. Bull. Korean Chem. Soc. 2004, 25, 271. https://doi.org/10.5012/bkcs.2004.25.2.271
  12. Kim, N. S.; Lee, D. S. J. Sep. Sci. 2004, 27, 96. https://doi.org/10.1002/jssc.200301603
  13. Pawliszyn, J. Trends Anal. Chem. 1995, 14, 113.
  14. Prosen, H.; Zupancic-Kralj, L. Trends Anal.Chem. 1999, 18, 272. https://doi.org/10.1016/S0165-9936(98)00109-5
  15. Vas, G.; Vekey, K. J. Mass Spectrom. 2004, 39, 233. https://doi.org/10.1002/jms.606
  16. Ouyang, G.; Pawliszyn, J. Anal. Chim. Acta 2008, 627, 184. https://doi.org/10.1016/j.aca.2008.08.015
  17. Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; Wiley-VCH: New York, 1997.
  18. Pawliszyn, J. Applications of Solid Phase Microextraction, Royal Society of Chemistry: Cambridge, 1999.
  19. Baltussen, E.; Sandra, P.; David, F.; Cramers, C. J. Microcolumn Sep. 1999, 11, 737. https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4
  20. Bicchi, C.; Cordero, C.; Iori, C.; Rubiolo, P. J. High Resol. Chromatogr. 2000, 23, 539. https://doi.org/10.1002/1521-4168(20000901)23:9<539::AID-JHRC539>3.0.CO;2-3
  21. Bruheim, I.; Liu, X.; Pawliszyn, J. Anal. Chem. 2003, 75, 1002. https://doi.org/10.1021/ac026162q
  22. Qin, Z.; Bragg, L.; Quyang, G.; Pawliszyn, J. J. Chromatogr. A 2008, 1196-1197, 89. https://doi.org/10.1016/j.chroma.2008.03.063
  23. Saito, Y. Zinno, K. Anal. Bioanal. Chem. 2002, 373, 325. https://doi.org/10.1007/s00216-002-1349-0
  24. Won, M. M.; Cha, E. J.; Yoon, O. K.; Kim, N. S.; Kim, K.; Lee, D. S. Anal. Chim. Acta 2009, 631, 54. https://doi.org/10.1016/j.aca.2008.10.013
  25. Yoon, O. K.; Lee, D. S. Bull. Korean Chem. Soc. 2009, 30, 35. https://doi.org/10.5012/bkcs.2009.30.1.035
  26. Cha, E. J., Won, M. M., Lee, D. S. Bull. Korean Chem. Soc. 2009, 30, 2675. https://doi.org/10.5012/bkcs.2009.30.11.2675
  27. Sellar, W. The Directory of Essential Oils; Daniel, C. W., Ed.; Co. Saffran Walden, UK 2001; pp 56-125.
  28. Jukic, M.; Politeo, O.; Milos, M. Croatica Chem. Acta 2006, 79, 209.
  29. Risch, S. J., Ed., Spices; ACS Symposium Series: Washington DC, 1997; p 5.
  30. Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A. Talanta 2007, 72, 1552. https://doi.org/10.1016/j.talanta.2007.02.019
  31. Official Methods of Analysis, 16th ed.; AOAC International: Arlington, VA, 1995; sec 962.17.
  32. Hang, X.; Yang, X. W. Zhongguo Zhong Yao Za Zhi 2007, 32, 1669.
  33. Heikes, D. L.; Scott, B.; Gorzovalitis, N. A. J. AOAC International 2001, 84, 1130.
  34. Gachkar, L.; Yadegari, D.; Rezaeri, M. B.; Taghizadeh, M.; Astaneh, S. A.; Rasooli, I. Food Chem. 2007, 102, 898. https://doi.org/10.1016/j.foodchem.2006.06.035
  35. Jirovetz, L.; Buchbauer, G.; Stoyanova, A. S.; Georgiev, E. V.; Daminanova, S. T. Int. J. Food Sci. Technol. 2005, 40, 305. https://doi.org/10.1111/j.1365-2621.2004.00915.x
  36. Machmudah, S.; Sulaswatty, A.; Sasaki, M.; Goto, M.; Hirose, T. J. Supercrit. Fluids 2006, 39, 30. https://doi.org/10.1016/j.supflu.2006.01.007
  37. Spricigo, C. B.; Pinto, L. T.; Novais, A. F. J. Supercrit. Fluids 1999, 15, 253. https://doi.org/10.1016/S0896-8446(99)00012-1
  38. Wang, Z.; Ding, L.; Li, T.; Zhou, X.; Wang, L.; Zhang, H.; Liu, L.; Li, Y.; Liu, Z.; Wang, H.; Zeng, H.; He, H. J. Chromatogr. A 2006, 1102(1-2), 11. https://doi.org/10.1016/j.chroma.2005.10.032
  39. Hashemi, P.; Yaramadi, A.; Azizi, K.; Sabouri, B. Chromatographia 2008, 67, 253. https://doi.org/10.1365/s10337-007-0492-3
  40. Wilkes, J. G.; Conte, E. D.; Kim, Y.; Holcomb, M.; Sutherland, J. B.; Miller, D. W. J. Chromatogr. A 2000, 880, 3. https://doi.org/10.1016/S0021-9673(00)00318-6
  41. Davis, D. V.; Cooks, R. G. J. Agric. Food Chem. 1982, 30, 495. https://doi.org/10.1021/jf00111a021
  42. Lee, J. N.; Park, C.; Whitesides, G. M. Anal. Chem. 2003, 75, 6544. https://doi.org/10.1021/ac0346712