References
- Hahn, R.; Schmidt-Stein, F.; Salonen, J.; Thiemann, S.; Song, Y. Y.; Kunze, J.; Lehto, V. P.; Schmuki, P. Angew. Chem. Int. Ed. 2009, 48, 1. https://doi.org/10.1002/anie.200890275
- Boercker, J. A.; Enache-Pommer, E.; Aydil, E. S. Nanotechnology 2008, 19, 095604. https://doi.org/10.1088/0957-4484/19/9/095604
- Cao, B.; Yao, W.; Wang, C.; Ma, X.; Feng, X.; Lu, X. Materials Letters 2010, 64, 1819. https://doi.org/10.1016/j.matlet.2010.05.014
- Shi, J.; Sun, C.; Starr, M. B.; Wang, X. Nano Lett. 2011, 11, 624. https://doi.org/10.1021/nl103702j
- Wang, J.; Sun, J.; Bian, X. Materials Science and Engineering A 2004, 379, 7. https://doi.org/10.1016/S0921-5093(03)00625-7
- Nuansing, W.; Ninmuang, S.; Jarernboon, W.; Maensiri, S.; Seraphin, S. Materials Science and Engineering B 2006, 131, 147. https://doi.org/10.1016/j.mseb.2006.04.030
- Pijanowska, D. G.; Sprenkels, A. J.; van den Linden, H.; Olthuis, W.; Bergveld, P.; van den Berg, A. Sensors and Actuators B 2004, 103, 350. https://doi.org/10.1016/j.snb.2004.04.108
- Shiraishi, Y.; Sugano, Y.; Tanaka, S.; Hirai, T. Angew. Chem. Int. Ed. 2010, 49, 1656. https://doi.org/10.1002/anie.200906573
- Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 1676. https://doi.org/10.1021/ja076503n
- Qiu, Y.; Chen, W.; Yang, S. Angew. Chem. Int. Ed. 2010, 49, 3675. https://doi.org/10.1002/anie.200906933
- Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132. https://doi.org/10.1021/ja910091z
- Park, J. H.; Kim, S. W.; Bard, A. J. Nano Lett. 2006, 6, 24. https://doi.org/10.1021/nl051807y
- Pang, C. L.; Lindsay, R.; Thornton, G. Chem. Soc. Rev. 2008, 37, 2328. https://doi.org/10.1039/b719085a
- Mao, S. S.; Chen, X. Int. J. Energy Res. 2007, 31, 619. https://doi.org/10.1002/er.1283
- Mao, S. S.; Chen, X. Int. J. Energy Res. 2007, 31, 619. https://doi.org/10.1002/er.1283
- Fabregat-Santiago, F.; Barea, E. M.; Bisquert, J.; Mor, G. K.; Shankar, K.; Grimes, C. A. J. Am. Chem. Soc. 2008, 130, 11312. https://doi.org/10.1021/ja710899q
- Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985. https://doi.org/10.1021/ja8078972
- Kolmakov, A.; Moskovits, M. Annu. Rev. Mater. Res. 2004, 34, 151. https://doi.org/10.1146/annurev.matsci.34.040203.112141
- Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. Nano Lett. 2002, 2, 717. https://doi.org/10.1021/nl025541w
- Wei, M,; Qi, Z. M.; Ichihara, M.; Hirabayashi, M.; Honma, I.; Zhou, H. Journal of Crystal Growth 2006, 296, 1. https://doi.org/10.1016/j.jcrysgro.2006.08.014
- Lee, Y. H.; Yoo, J. M.; Park, D. H. Applied Physics Letters 2005, 86, 033110. https://doi.org/10.1063/1.1851614
- Kominami, H.; Ishii, Y.; Kohno, M.; Konishia, S.; Kera, Y.; Ohtanic, B. Catalysis Letters 2003, 91, 1. https://doi.org/10.1023/B:CATL.0000006310.50290.ba
- Amin, S. S.; Li, S. Y.; Wu, X.; Ding, W.; Xu, T. T. Nanoscale Res. Lett. 2010, 5, 338. https://doi.org/10.1007/s11671-009-9485-5
- Park, J. B.; Ryu, Y.; Kim, H. S.; Yu, C. H. Nanotechnology 2009, 20, 105608. https://doi.org/10.1088/0957-4484/20/10/105608
- Daothong, S.; Songmee, N.; Thongtem, S.; Singjai, P. Scripta Materialia 2007, 57, 567. https://doi.org/10.1016/j.scriptamat.2007.06.030
- Wu, J. J.; Yu, C. C. J. Phys. Chem. B 2004, 108, 3377. https://doi.org/10.1021/jp0361935
- Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K. Nanotechnology 2008, 19, 075611. https://doi.org/10.1088/0957-4484/19/7/075611
- Yu, J.; Chen, Y.; Glushenkov, A. M. Crystal Growth & Design 2009, 9, 1240. https://doi.org/10.1021/cg801125w
- Baik, J. M.; Kim, M. H.; Larson, C.; Chen, X.; Guo, S.; Wodtke, A. M.; Moskovits, M. Applied Physics Letters 2008, 92, 242111. https://doi.org/10.1063/1.2949086
- Amin, S. S.; Nicholls, A. W.; Xu, T. T. Nanotechnology 2007, 18, 445609. https://doi.org/10.1088/0957-4484/18/44/445609
- Lee, J. S.; Brittman, S.; Yu, D.; Park, H. K. J. Am. Chem. Soc. 2008, 130, 6252. https://doi.org/10.1021/ja711481b
- Peng, H.; Meister, S.; Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2007, 7, 199. https://doi.org/10.1021/nl062047+
Cited by
- Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration vol.22, pp.4, 2013, https://doi.org/10.5757/JKVS.2013.22.4.204
- One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts vol.114, pp.19, 2014, https://doi.org/10.1021/cr400633s
- High-yield synthesis of single-crystalline InSb nanowires by using control of the source container vol.64, pp.2, 2014, https://doi.org/10.3938/jkps.64.263
- Growing TiO2 nanowires by solid–liquid–solid mechanism including two factors (Ti and O) vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-9963-4
- nanowiers/Si heterojunction arrays vol.23, pp.10, 2014, https://doi.org/10.1088/1674-1056/23/10/107302
- nanowires via thermal oxidation process in air vol.20, pp.6, 2016, https://doi.org/10.1179/1433075X15Y.0000000027
- Controlled fabrication of Sn/TiO 2 nanorods for photoelectrochemical water splitting vol.8, pp.1, 2011, https://doi.org/10.1186/1556-276x-8-462
- Seed-Assisted Growth of TiO 2 Nanowires by Thermal Oxidation for Chemical Gas Sensing vol.10, pp.5, 2011, https://doi.org/10.3390/nano10050935