참고문헌
- G. N. Bojadziev, Damped forced nonlinear vibrations of systems with delay, J. Sound Vibration 46 (1976), 113-120. https://doi.org/10.1016/0022-460X(76)90821-X
- G. N. Bojadziev, Two variables expansion method applied to the study of damped non-linear oscillations, Nonlinear Vibration Problems 21 (1981), 11-18.
- G. N. Bojadziev, Damped nonlinear oscillations modeled by a 3-dimensional differential system, Acta Mech. 48 (1983), no. 3-4, 193-201. https://doi.org/10.1007/BF01170417
- N. N. Bogoliubov and Yu. A. Mitropolskii, Asymptotic Methods in the Theory of Non- linear Oscillations, Gordan and Breach, New York, 1961.
- A. Hassan, The KBM derivative expansion method is equivalent to the multiple-time- scales method, J. Sound Vibration 200 (1997), no. 4, 433-440. https://doi.org/10.1006/jsvi.1996.0710
- B. Z. Kaplan, Use of complex variables for the solution of certain nonlinear systems, J. Computer Methods in Applied Mechanics and Engineering 13 (1978), 281-291. https://doi.org/10.1016/0045-7825(78)90063-4
- N. N. Krylov and N. N. Bogoliubov, Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey, 1947.
- I. S. N. Murty, A unified Krylov-Bogoliubov method for solving second order nonlinear systems, Int. J. Nonlinear Mech. 6 (1971), 45-53. https://doi.org/10.1016/0020-7462(71)90033-3
- I. S. N. Murty, B. L. Deekshatulu, and G. Krisna, On asymptotic method of Krylov- Bogoliubov for overdamped nonlinear systems, J. Frank Inst. 288 (1969), 49-64. https://doi.org/10.1016/0016-0032(69)00203-1
- A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York-London-Sydney, 1973.
- A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience [John Wiley & Sons], New York, 1981.
- I. P. Popov, A generalization of the asymptotic method of N. N. Bogolyubov in the theory of non-linear oscillations, Dokl. Akad. Nauk SSSR (N.S.) 111 (1956), 308-311.
- R. A. Rink, A procedure to obtain the initial amplitude and phase for the Krylov- Bogoliubov method, J. Franklin Inst. 303 (1977), 59-65. https://doi.org/10.1016/0016-0032(77)90075-8
- M. Shamsul Alam, A unified Krylov-Bogoliubov-Mitropolskii method for solving n-order nonlinear systems, J. Franklin Inst. 339 (2002), 239-248. https://doi.org/10.1016/S0016-0032(02)00020-0
- M. Shamsul Alam, A unified Krylov-Bogoliubov-Mitropolskii method for solving n-th order nonlin- ear systems with varying coefficients, J. Sound and Vibration 265 (2003), 987-1002. https://doi.org/10.1016/S0022-460X(02)01239-7
- M. Shamsul Alam, A modified and compact form of Krylov-Bogoliubov-Mitropolskii unified KBM method for solving an n-th order nonlinear differential equation, Int. J. Nonlinear Mech. 39 (2004), 1343-1357. https://doi.org/10.1016/j.ijnonlinmec.2003.08.008
- M. Shamsul Alam, M. Abul Kalam Azad, and M. A. Hoque. A general Struble's technique for solving an n-th order weakly nonlinear differential system with damping, Int. J. Nonlinear Mech. 41 (2006), 905-918. https://doi.org/10.1016/j.ijnonlinmec.2006.08.001