DOI QR코드

DOI QR Code

THE LAW OF A STOCHASTIC INTEGRAL WITH TWO INDEPENDENT BIFRACTIONAL BROWNIAN MOTIONS

  • Liu, Junfeng (School of Mathematics and Statistics Nanjing Audit University)
  • Received : 2010.06.12
  • Published : 2011.10.31

Abstract

In this note, we obtain the expression of the characteristic fucntion of the random variable $\int_o^TB_s^{{\alpha},{\beta}}dB_s^{H,K}$, where $B^{{\alpha},{\beta}}$ and $B^{H,K}$ are two independent bifractional Brownian motions with indices ${\alpha}{\in}(0,1),{\beta}{\in}(0, 1]$ and $HK{\in}(\frac{1}{2},\;1)$ respectively.

Keywords

References

  1. E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to Gaussian pro- cesses, Ann. Probab. 29 (2001), no. 2, 766-801. https://doi.org/10.1214/aop/1008956692
  2. X. Bardina and C. A. Tudor, The law of a stochastic integral with two independent fractional Brownian motions, Bol. Soc. Mat. Mexicana (3) 13 (2007), no. 1, 231-242.
  3. R. Berthuet, Loi du logharitme itere pour cetaines integrales stochastiques, Ann. Sci. Univ. Clermont-Ferrand Math. 69 (1981), 9-18.
  4. F. Biagini, Y. Hu, B. Oksendal, and T. Zhang, Stochastic Calculus for Fractional Brow- nian Motion and Applications, Springer-Verlag London, Ltd., London, 2008.
  5. P. Caithamer, Decoupled double stochastic fractional integrals, Stochastics 77 (2005), no. 3, 205-210. https://doi.org/10.1080/10451120500138556
  6. K. Es-Sebaiy and C. A. Tudor, Multidimensional bifractional Brownian motion: Ito and Tanaka formulas, Stoch. Dyn. 7 (2007), no. 3, 365-388. https://doi.org/10.1142/S0219493707002050
  7. C. Houdre and J. Villa, An example of infinite dimensional quasi-helix, Stochastic models (Mexico City, 2002), 195-201, Contemp. Math., 336, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/conm/336/06034
  8. Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc. 175 (2005), no. 825, viii+127 pp.
  9. R. Klein and E. Gine, On quadratic variation of processes with Gaussian increments, Ann. Probab. 3 (1975), no. 4, 716-721. https://doi.org/10.1214/aop/1176996311
  10. I. Kruk, F. Russo, and C. A. Tudor, Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal. 249 (2007), no. 1, 92-142. https://doi.org/10.1016/j.jfa.2007.03.031
  11. P. Lei and D. Nualart, A decomposition of the bifractional Brownian motion and some applications, Statist. Probab. Lett. 79 (2009), no. 5, 619-624. https://doi.org/10.1016/j.spl.2008.10.009
  12. P. Levy, Wiener's random function, and other Laplacian random functions, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 171-187. University of California Press, Berkeley and Los Angeles, 1951.
  13. Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, 1929. Springer-Verlag, Berlin, 2008.
  14. D. Nualart, Malliavin Calculus and Related Topics, 2nd edition Springer, New York, 2006.
  15. P. E. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2005.
  16. F. Russo and C. A. Tudor, On bifractional Brownian motion, Stochastic Process. Appl. 116 (2006), no. 5, 830-856. https://doi.org/10.1016/j.spa.2005.11.013
  17. C. A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion, Bernoulli 13 (2007), no. 4, 1023-1052. https://doi.org/10.3150/07-BEJ6110
  18. L. Yan, J. Liu, and G. Jing, Quadratic covariation and Ito formula for a bifractional Brownian motion, preprint (2008).
  19. M. Yor, Remarques sur une formule de Paul Levy, pp. 343-346, Lecture Notes in Math., 784, Springer, Berlin, 1980. https://doi.org/10.1007/BFb0089501

Cited by

  1. The Schoenberg--Lévy Kernel and Relationships among Fractional Brownian Motion, Bifractional Brownian Motion, and Others vol.57, pp.4, 2013, https://doi.org/10.1137/S0040585X97986230
  2. The Schoenberg - Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others vol.57, pp.4, 2012, https://doi.org/10.4213/tvp4477