DOI QR코드

DOI QR Code

Synthesis and Characterization of (AgSbTe2)15(GeTe)85 Thermoelectric Powder by Gas Atomization Process

가스분무공정을 이용한 (AgSbTe2)15(GeTe)85 열전분말의 제조 및 특성평가

  • Kim, Hyo-Seob (Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University) ;
  • Lee, Jin-Kyu (Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University) ;
  • Koo, Jar-Myung (Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University) ;
  • Chun, Byong-Sun (Korea Institute of Science and Technology Information) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University)
  • 김효섭 (공주대학교 신소재공학부) ;
  • 이진규 (공주대학교 신소재공학부) ;
  • 구자명 (공주대학교 신소재공학부) ;
  • 천병선 (한국과학기술정보연구원) ;
  • 홍순직 (공주대학교 신소재공학부)
  • Received : 2011.08.23
  • Accepted : 2011.09.20
  • Published : 2011.10.28

Abstract

In this study, p-type $(AgSbTe_2)_{15}(GeTe)_{85}$: TAGS-85 compound powders were prepared by gas atomization process, and then their microstructures and mechanical properties were investigated. The fabricated powders were of spherical shape, had clean surface, and illustrated fine microstructure and homogeneous $AgSbTe_2$ + GeTe solid solution. Powder X-ray diffraction results revealed that the crystal structure of the TAGS-85 sample was single rhombohedral GeTe phase, which with a space group $R_{3m}$. The grain size of the powder particles increased while the micro Vickers hardness decreased with increasing annealing temperature within the range of 573 K and 723 K due to grain growth and loss of Te. In addition, the crystal structure of the powder went through a phase transformation from rhombohedral ($R_{3m}$) at low-temperature to cubic ($F_{m-3m}$) at high-temperature with increasing annealing temperature. The micro Vickers hardness of the as-atomized powder was around 165 Hv, while it decreased gradually to 130 Hv after annealing at 673K, which is still higher than most other fabrication processes.

Keywords

References

  1. Y. Chen, T. J. Zhu, S. H. Yang, S. N. Zhang, W. Miao and X. B. Zhao: J. Electron. Mater., 39 (2010) 1719. https://doi.org/10.1007/s11664-010-1202-8
  2. C. K. Kim, G. J. Lee and C. K Rhee: J. Korean Powder Metall. Inst., 17 (2010) 276 (Korean). https://doi.org/10.4150/KPMI.2010.17.4.276
  3. S. N. Zhang, T. J. Zhu, S. H. Yang, C. Yu and X. B. Zhao: J. Alloys & Comp., 499 (2010) 215. https://doi.org/10.1016/j.jallcom.2010.03.170
  4. S. H. Yang, T. J. Zhu, C. Yu, J. J. Shen, Z. Z. Yin and X. B. Zhao: J. Electron. Mater., 40 (2010) 1244.
  5. J. S. Choi, T. S. Oh, D. B. Hyun and H. W. Lee: J. Kor. Inst. of Met. & Mater., 36 (1998) 614 (Korean).
  6. G. G. Lee, S.H. Kim, G.H. Ha and K.T. Kim: J. Korean Powder Metall. Inst., 17 (2010) 336 (Korean). https://doi.org/10.4150/KPMI.2010.17.4.336
  7. Y. S. Nam, J. K. Choi, J. O. Hong, Y. H. Lee, M. H. Lee and W. S. Seo: Kor. J. Mater. Research, 13 (2003) 543 (Korean). https://doi.org/10.3740/MRSK.2003.13.8.543
  8. J. L. Cui, H. Fu, Y. M. Yan, X. J. Zhang and D. Y. Chen: J. Electron. Mater., 39 (2010) 1493. https://doi.org/10.1007/s11664-010-1278-1
  9. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. https://doi.org/10.1038/nmat2090
  10. F. J. DiSalvo: Science, 285 (1999) 703. https://doi.org/10.1126/science.285.5428.703
  11. B. S. Kim, I. H. Kim, J. K. Lee, B. K. Min, M. W. Oh, S. D. Park, H. W. Lee and M. H. Kim: Electro. Mater. Letters, 6 (2010) 181. https://doi.org/10.3365/eml.2010.12.181
  12. G. C. Christakudis, S. K. Plachkova, L. E. Shelimova and E. Avilov: Phys. Status Solidi., A 128 (1991) 4652.
  13. B. A. Cook, M. J. Kramer, X. Wei and J. L. Jarringa: J. Appl. Phys., 191 (2007) 053715.
  14. A. J. Thompson, J.W. Sharp and C. J. Rawn: J. Electro. Mater., 38 (2009) 1407. https://doi.org/10.1007/s11664-009-0817-0
  15. S. H. Yang, T. J. Zhul, T. Sun, J. He, S. N. Zhang and X.B. Zhao: Nanotechnology, 19 (2008) 245707. https://doi.org/10.1088/0957-4484/19/24/245707
  16. M. Zhou, J. F. Li and T. Kita: J. Am. Chem. Soc., 130 (2008) 4527. https://doi.org/10.1021/ja7110652
  17. E. A. Skrabek and D. S. Trimmer: CRC Handbook of Thermoelectrics, ed. D. M. Rowe (Boca Raton, Fl: CRC, 1995), 267.
  18. L. E. Bell: J. Electron. Mater., 38 (2009) 1344. https://doi.org/10.1007/s11664-009-0682-x
  19. D. Rosi, J. P. Dismuke and E. F. Hockings: Electr. Eng., 79 (1960) 450. https://doi.org/10.1109/EE.1960.6432651
  20. J. H. Wernick and H. C. Gatos (Eds.): Properties of Elemental and Compound Semiconductors, Interscience, New York, (1960) 69.
  21. K. Hasezakim M. Nishimura, M. Umata H. Tsukuda and M. Araaoka: Proc. 12th Int. Conf. on Thermoelectrics, (1993) 307.
  22. O. Sh. Gogishvili, I. P. Lavrinenko, S. P. Lalykin, T. M. Melashivili and L. D. Rogovoy: Proc. 11th Int. Conf. on Thermoelectrics, (1992) 271.
  23. B. Y. T. Jung, S. E. Nam, D. B. Hyun and T. S. Oh: J. Kor. Inst. Metals & Mater., 35 (1997) 223 (Korean).
  24. M. Miyajima, K. Takagi, H. Okamura, G. G. Lee, Y. Noda and R. Watanabe: Proc. 15th Int. Conf. on Thermoelectrics (1993) 155.
  25. I. S. Kim, C. W. Hwang and B. S. Chun: J. Kor. Inst. of Metal & Mater., 35 (1997) 258 (Korean).
  26. M. C. Flemings: Solidification Processing, McGraw Hill (1974) 134.
  27. D. M. Rowe: CRC handbook of thermoelectrics, CRC press, (1994) 401.
  28. K. Mashi, Y. Kanamitu, S. Hotta and K. Nakayoshi: Proc. 12th Int. Conf. on Thermoelectrics, (1993) 155.
  29. J. S. Hwang, D. B. Hyun, T. S. Oh, H. W. Lee and J. D. Shim: J. Kor. Inst. of Met. & Mater., 36 (1998) 601 (Korean).
  30. J. Y. Raty, J.-P. Gaspard, C. Bichara, C. Bergman R. Bellissent and R. Ceolin: Physica, B 276 (2000) 473. https://doi.org/10.1016/S0921-4526(99)01268-5
  31. J. Goldak, C. S. Barrett, D. Innes and W. Youdles: J. Chem. Phys., 44 (1966) 3323. https://doi.org/10.1063/1.1727231
  32. B. A. Cook, Kramer, M. J., Wei, X., Harringa, J. L. and Levin, E.: J. Appl. Phys., 101 (2007) 053715. https://doi.org/10.1063/1.2645675
  33. B. A. Cook, Xuezheng Wei, Joel, L. Harringa and M. J. Kramer: J. Mater. Sci., 42 (2007) 7643. https://doi.org/10.1007/s10853-007-1898-x
  34. J. R. Salvador, J. Yang, X. Xhi, H. Wang and A. A Wereszczak: J. Solid State Chem., 182 (2009) 2088. https://doi.org/10.1016/j.jssc.2009.05.024

Cited by

  1. Thermoelectric properties of n-type Bi2Te3 alloys produced by a combined process of magnetic pulsed compaction (MPC) and spark plasma sintering (SPS) vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1666-x