DOI QR코드

DOI QR Code

BMPs and their clinical potentials

  • Kim, Mee-Jung (Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science) ;
  • Choe, Senyon (Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science)
  • Received : 2011.09.19
  • Published : 2011.10.31

Abstract

Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo-conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer.

Keywords

References

  1. Wagner, D. O., Sieber, C., Bhushan, R., Borgermann, J. H., Graf, D. and Knaus, P. (2010) BMPs: from bone to body morphogenetic proteins. Sci. Signal. 3, mr1.
  2. Reddi, A. H. (2005) BMPs: from bone morphogenetic proteins to body morphogenetic proteins. Cytokine. Growth. Factor. Rev. 16, 249-250. https://doi.org/10.1016/j.cytogfr.2005.04.003
  3. Satterfield, M. C. and Wu, G. (2011) Brown adipose tissue growth and development: significance and nutritional regulation. Front. Biosci. 16, 1589-1608. https://doi.org/10.2741/3807
  4. Kopelman, P. G. (2000) Obesity as a medical problem. Nature 404, 635-643. https://doi.org/10.1038/35007508
  5. Hsu, I. R., Kim, S. P., Kabir, M. and Bergman, R. N. (2007) Metabolic syndrome, hyperinsulinemia, and cancer. Am J. Clin. Nutr. 86, s867-871. https://doi.org/10.1093/ajcn/86.3.867S
  6. Craft, S. (2007) Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer. Res. 4, 147-152. https://doi.org/10.2174/156720507780362137
  7. Cornier, M. A., Dabelea, D., Hernandez, T. L., Lindstrom, R. C., Steig, A. J., Stob, N. R., Van Pelt, R. E., Wang, H. and Eckel, R. H. (2008) The metabolic syndrome. Endocr. Rev. 29, 777-822. https://doi.org/10.1210/er.2008-0024
  8. Hammond, R. A. and Levine, R. (2010) The economic impact of obesity in the United States. Diabetes. Metab. Syndr. Obes. 3, 285-295. https://doi.org/10.2147/DMSO.S7384
  9. Zamani, N. and Brown, C. W. (2011) Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr. Rev. 32, 387-403. https://doi.org/10.1210/er.2010-0018
  10. Snow, V., Barry, P., Fitterman, N., Qaseem, A. and Weiss, K. (2005) Pharmacologic and surgical management of obesity in primary care: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 142, 525-531. https://doi.org/10.7326/0003-4819-142-7-200504050-00011
  11. Colman, E. (2005) Anorectics on trial: a half century of federal regulation of prescription appetite suppressants. Ann. Intern. Med. 143, 380-385. https://doi.org/10.7326/0003-4819-143-5-200509060-00013
  12. Gesta, S., Tseng, Y. H. and Kahn, C. R. (2007) Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256. https://doi.org/10.1016/j.cell.2007.10.004
  13. Martinsson, A. (1969) Hypertrophy and hyperplasia of human adipose tissue in obesity. Pol. Arch. Med. Wewn. 42, 481-486.
  14. Shepherd, P. R., Gnudi, L., Tozzo, E., Yang, H., Leach, F. and Kahn, B. B. (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 268, 22243-22246.
  15. Otto, T. C. and Lane, M. D. (2005) Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40, 229-242. https://doi.org/10.1080/10409230591008189
  16. Tang, Q. Q., Otto, T. C. and Lane, M. D. (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U.S.A. 101, 9607-9611. https://doi.org/10.1073/pnas.0403100101
  17. Tseng, Y. H., Kokkotou, E., Schulz, T. J., Huang, T. L., Winnay, J. N., Taniguchi, C. M., Tran, T. T., Suzuki, R., Espinoza, D. O., Yamamoto, Y., Ahrens, M. J., Dudley, A. T., Norris, A. W., Kulkarni, R. N. and Kahn, C. R. (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 454, 1000-1004. https://doi.org/10.1038/nature07221
  18. Bowers, R. R., Kim, J. W., Otto, T. C. and Lane, M. D. (2006) Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc. Natl. Acad. Sci. U.S.A. 103, 13022-13027. https://doi.org/10.1073/pnas.0605789103
  19. Dani, C., Smith, A. G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., Darimont, C. and Ailhaud, G. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell. Sci. 110(Pt 11), 1279-1285.
  20. Bowers, R. R. and Lane, M. D. (2007) A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle. 6, 385-389. https://doi.org/10.4161/cc.6.4.3804
  21. Ji, X., Chen, D., Xu, C., Harris, S. E., Mundy, G. R. and Yoneda, T. (2000) Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. J. Bone Miner. Metab. 18, 132-139. https://doi.org/10.1007/s007740050103
  22. Sottile, V. and Seuwen, K. (2000) Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Lett. 475, 201-204. https://doi.org/10.1016/S0014-5793(00)01655-0
  23. Hata, K., Nishimura, R., Ikeda, F., Yamashita, K., Matsubara, T., Nokubi, T. and Yoneda, T. (2003) Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell 14, 545-555. https://doi.org/10.1091/mbc.E02-06-0356
  24. Jin, W., Takagi, T., Kanesashi, S. N., Kurahashi, T., Nomura, T., Harada, J. and Ishii, S. (2006) Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev. Cell 10, 461-471. https://doi.org/10.1016/j.devcel.2006.02.016
  25. Chen, D., Ji, X., Harris, M. A., Feng, J. Q., Karsenty, G., Celeste, A. J., Rosen, V., Mundy, G. R. and Harris, S. E. (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J. Cell. Biol. 142, 295-305. https://doi.org/10.1083/jcb.142.1.295
  26. Sebald, W., Nickel, J., Zhang, J. L. and Mueller, T. D. (2004) Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction. Biol. Chem. 385, 697-710. https://doi.org/10.1515/BC.2004.086
  27. Schulz, T. J. and Tseng, Y. H. (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine. Growth. Factor. Rev. 20, 523-531. https://doi.org/10.1016/j.cytogfr.2009.10.019
  28. Bottcher, Y., Unbehauen, H., Kloting, N., Ruschke, K., Korner, A., Schleinitz, D., Tonjes, A., Enigk, B., Wolf, S., Dietrich, K., Koriath, M., Scholz, G. H., Tseng, Y. H., Dietrich, A., Schon, M. R., Kiess, W., Stumvoll, M., Bluher, M. and Kovacs, P. (2009) Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes 58, 2119-2128. https://doi.org/10.2337/db08-1458
  29. Wu, Y., Zhou, S. and Smas, C. M. (2010) Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech. Dev. 127, 183-202. https://doi.org/10.1016/j.mod.2009.12.003
  30. Allen, D. L., Cleary, A. S., Speaker, K. J., Lindsay, S. F., Uyenishi, J., Reed, J. M., Madden, M. C. and Mehan, R. S. (2008) Myostatin, activin receptor IIb, and follistatin- like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am. J. Physiol. Endocrinol. Metab. 294, E918-927. https://doi.org/10.1152/ajpendo.00798.2007
  31. Chen, T. L., Shen, W. J. and Kraemer, F. B. (2001) Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J. Cell Biochem. 82, 187-199. https://doi.org/10.1002/jcb.1145
  32. Neumann, K., Endres, M., Ringe, J., Flath, B., Manz, R., Haupl, T., Sittinger, M. and Kaps, C. (2007) BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture. J. Cell Biochem. 102, 626-637. https://doi.org/10.1002/jcb.21319
  33. Richard, D., Carpentier, A. C., Dore, G., Ouellet, V. and Picard, F. (2010) Determinants of brown adipocyte development and thermogenesis. Int. J. Obes (Lond). 34 (Suppl 2), S59-66. https://doi.org/10.1038/ijo.2010.241
  34. Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F. C., Palmer, E. L., Tseng, Y. H., Doria, A., Kolodny, G. M. and Kahn, C. R. (2009) Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509-1517. https://doi.org/10.1056/NEJMoa0810780
  35. Virtanen, K. A., Lidell, M. E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N. J., Enerback, S. and Nuutila, P. (2009) Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518-1525. https://doi.org/10.1056/NEJMoa0808949
  36. Saito, M., Okamatsu-Ogura, Y., Matsushita, M., Watanabe, K., Yoneshiro, T., Nio-Kobayashi, J., Iwanaga, T., Miyagawa, M., Kameya, T., Nakada, K., Kawai, Y. and Tsujisaki, M. (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526-1531. https://doi.org/10.2337/db09-0530
  37. Zingaretti, M. C., Crosta, F., Vitali, A., Guerrieri, M., Frontini, A., Cannon, B., Nedergaard, J. and Cinti, S. (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB. J. 23, 3113-3120. https://doi.org/10.1096/fj.09-133546
  38. Harris, M. I. (1998) Diabetes in America: epidemiology and scope of the problem. Diabetes Care. 21(Suppl 3), C11-14. https://doi.org/10.2337/diacare.21.3.C11
  39. Taylor, S. I. (1999) Deconstructing type 2 diabetes. Cell 97, 9-12. https://doi.org/10.1016/S0092-8674(00)80709-6
  40. Saltiel, A. R. (2001) New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104, 517-529. https://doi.org/10.1016/S0092-8674(01)00239-2
  41. Chen, J. W., Christiansen, J. S. and Lauritzen, T. (2003) Limitations to subcutaneous insulin administration in type 1 diabetes. Diabetes Obes. Metab. 5, 223-233. https://doi.org/10.1046/j.1463-1326.2003.00266.x
  42. Chen, W., Salojin, K. V., Mi, Q. S., Grattan, M., Meagher, T. C., Zucker, P. and Delovitch, T. L. (2004) Insulin-like growth factor (IGF)-I/IGF-binding protein-3 complex: therapeutic efficacy and mechanism of protection against type 1 diabetes. Endocrinology 145, 627-638. https://doi.org/10.1210/en.2003-1274
  43. Tobin, J. F. and Celeste, A. J. (2006) Bone morphogenetic proteins and growth differentiation factors as drug targets in cardiovascular and metabolic disease. Drug. Discov Today 11, 405-411. https://doi.org/10.1016/j.drudis.2006.03.016
  44. Miller, A. F., Harvey, S. A., Thies, R. S. and Olson, M. S. (2000) Bone morphogenetic protein-9. An autocrine/ paracrine cytokine in the liver. J. Biol. Chem. 275, 17937-17945. https://doi.org/10.1074/jbc.275.24.17937
  45. Caperuto, L. C., Anhe, G. F., Cambiaghi, T. D., Akamine, E. H., do Carmo Buonfiglio, D., Cipolla-Neto, J., Curi, R. and Bordin, S. (2008) Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. Endocrinology 149, 6326-6335. https://doi.org/10.1210/en.2008-0655
  46. Lautt, W. W. (1999) The HISS story overview: a novel hepatic neurohumoral regulation of peripheral insulin sensitivity in health and diabetes. Can. J. Physiol. Pharmacol. 77, 553-562. https://doi.org/10.1139/y99-067
  47. Bidart, M., Ricard, N., Levet, S., Samson, M., Mallet, C., David, L., Subileau, M., Tillet, E., Feige, J. J. and Bailly, S. (2011) BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell. Mol. Life. Sci. June 28. [Epub ahead of print].
  48. Anhe, F. F., Lellis-Santos, C., Leite, A. R., Hirabara, S. M., Boschero, A. C., Curi, R., Anhe, G. F. and Bordin, S. (2010) Smad5 regulates Akt2 expression and insulin- induced glucose uptake in L6 myotubes. Mol. Cell. Endocrinol. 319, 30-38. https://doi.org/10.1016/j.mce.2010.01.003
  49. Song, J. J., Celeste, A. J., Kong, F. M., Jirtle, R. L., Rosen, V. and Thies, R. S. (1995) Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology 136, 4293-4297. https://doi.org/10.1210/en.136.10.4293
  50. Chen, C., Grzegorzewski, K. J., Barash, S., Zhao, Q., Schneider, H., Wang, Q., Singh, M., Pukac, L., Bell, A. C., Duan, R., Coleman, T., Duttaroy, A., Cheng, S., Hirsch, J., Zhang, L., Lazard, Y., Fischer, C., Barber, M. C., Ma, Z. D., Zhang, Y. Q., Reavey, P., Zhong, L., Teng, B., Sanyal, I., Ruben, S. M., Blondel, O. and Birse, C. E. (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat. Biotechnol. 21, 294-301. https://doi.org/10.1038/nbt795
  51. Wang, J., Greene, S. B. and Martin, J. F. (2011) BMP signaling in congenital heart disease: new developments and future directions. Birth. Defects. Res. A. Clin. Mol. Teratol. 91, 441-448. https://doi.org/10.1002/bdra.20785
  52. Lowery, J. W. and de Caestecker, M. P. (2010) BMP signaling in vascular development and disease. Cytokine Growth Factor Rev. 21, 287-298. https://doi.org/10.1016/j.cytogfr.2010.06.001
  53. Chen, N. X. and Moe, S. M. (2003) Arterial calcification in diabetes. Curr. Diab. Rep. 3, 28-32. https://doi.org/10.1007/s11892-003-0049-2
  54. Liu, Y. and Shanahan, C. M. (2011) Signalling pathways and vascular calcification. Front. Biosci. 16, 1302-1314. https://doi.org/10.2741/3790
  55. Rennenberg, R. J., Schurgers, L. J., Kroon, A. A. and Stehouwer, C. D. (2010) Arterial calcifications. J. Cell. Mol. Med. 14, 2203-2210. https://doi.org/10.1111/j.1582-4934.2010.01139.x
  56. Corriere, M. A., Rogers, C. M., Eliason, J. L., Faulk, J., Kume, T., Hogan, B. L. and Guzman, R. J. (2008) Endothelial Bmp4 is induced during arterial remodeling: effects on smooth muscle cell migration and proliferation. J. Surg. Res. 145, 142-149. https://doi.org/10.1016/j.jss.2007.03.077
  57. Bostrom, K., Watson, K. E., Horn, S., Wortham, C., Herman, I. M. and Demer, L. L. (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91, 1800-1809. https://doi.org/10.1172/JCI116391
  58. Sorescu, G. P., Sykes, M., Weiss, D., Platt, M. O., Saha, A., Hwang, J., Boyd, N., Boo, Y. C., Vega, J. D., Taylor, W. R. and Jo, H. (2003) Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J. Biol. Chem. 278, 31128-31135. https://doi.org/10.1074/jbc.M300703200
  59. Cheng, S. L., Shao, J. S., Charlton-Kachigian, N., Loewy, A. P. and Towler, D. A. (2003) MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J. Biol. Chem. 278, 45969-45977. https://doi.org/10.1074/jbc.M306972200
  60. Tobin, M. J. (2003) Chronic obstructive pulmonary disease, pollution, pulmonary vascular disease, transplantation, pleural disease, and lung cancer in AJRCCM 2002. Am. J. Respir. Crit. Care. Med. 167, 356-370. https://doi.org/10.1164/rccm.2212003
  61. Zebboudj, A. F., Imura, M. and Bostrom, K. (2002) Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J. Biol. Chem. 277, 4388-4394. https://doi.org/10.1074/jbc.M109683200
  62. Yao, Y., Zebboudj, A. F., Shao, E., Perez, M. and Bostrom, K. (2006) Regulation of bone morphogenetic protein-4 by matrix GLA protein in vascular endothelial cells involves activin-like kinase receptor 1. J. Biol. Chem. 281, 33921- 33930. https://doi.org/10.1074/jbc.M604239200
  63. Dhore, C. R., Cleutjens, J. P., Lutgens, E., Cleutjens, K. B., Geusens, P. P., Kitslaar, P. J., Tordoir, J. H., Spronk, H. M., Vermeer, C. and Daemen, M. J. (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 21, 1998-2003. https://doi.org/10.1161/hq1201.100229
  64. Luo, G., Ducy, P., McKee, M. D., Pinero, G. J., Loyer, E., Behringer, R. R. and Karsenty, G. (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78-81. https://doi.org/10.1038/386078a0
  65. Sweatt, A., Sane, D. C., Hutson, S. M. and Wallin, R. (2003) Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J. Thromb. Haemost. 1, 178-185. https://doi.org/10.1046/j.1538-7836.2003.00023.x
  66. Hur, D. J., Raymond, G. V., Kahler, S. G., Riegert- Johnson, D. L., Cohen, B. A. and Boyadjiev, S. A. (2005) A novel MGP mutation in a consanguineous family: review of the clinical and molecular characteristics of Keutel syndrome. Am. J. Med. Genet. A. 135, 36-40.
  67. Hruska, K. A., Guo, G., Wozniak, M., Martin, D., Miller, S., Liapis, H., Loveday, K., Klahr, S., Sampath, T. K. and Morrissey, J. (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am. J. Physiol. Renal. Physiol. 279, F130-143. https://doi.org/10.1152/ajprenal.2000.279.1.F130
  68. Vukicevic, S., Basic, V., Rogic, D., Basic, N., Shih, M. S., Shepard, A., Jin, D., Dattatreyamurty, B., Jones, W., Dorai, H., Ryan, S., Griffiths, D., Maliakal, J., Jelic, M., Pastorcic, M., Stavljenic, A. and Sampath, T. K. (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J. Clin. Invest. 102, 202-214. https://doi.org/10.1172/JCI2237
  69. Simic, P. and Vukicevic, S. (2005) Bone morphogenetic proteins in development and homeostasis of kidney. Cytokine. Growth. Factor. Rev. 16, 299-308. https://doi.org/10.1016/j.cytogfr.2005.02.010
  70. Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F. and Kalluri, R. (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964-968. https://doi.org/10.1038/nm888
  71. Davies, M. R., Lund, R. J. and Hruska, K. A. (2003) BMP-7 is an efficacious treatment of vascular calcification in a murine model of atherosclerosis and chronic renal failure. J. Am. Soc. Nephrol. 14, 1559-1567. https://doi.org/10.1097/01.ASN.0000068404.57780.DD
  72. Li, T., Surendran, K., Zawaideh, M. A., Mathew, S. and Hruska, K. A. (2004) Bone morphogenetic protein 7: a novel treatment for chronic renal and bone disease. Curr. Opin. Nephrol. Hypertens. 13, 417-422. https://doi.org/10.1097/01.mnh.0000133974.24935.fe
  73. McAllister, K. A., Grogg, K. M., Johnson, D. W., Gallione, C. J., Baldwin, M. A., Jackson, C. E., Helmbold, E. A., Markel, D. S., McKinnon, W. C., Murrell, J. McCormick, M. K., Pericak-Vance, M. A., Heutink, P., Oostra, B. A., Haitjema, T., Westerman, C. J. J., Porteous, M. E., Guttmacher, A. E., Letarte, M. and Marchuk, D. A. (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345-351. https://doi.org/10.1038/ng1294-345
  74. Johnson, D. W., Berg, J. N., Baldwin, M. A., Gallione, C. J., Marondel, I., Yoon, S. J., Stenzel, T. T., Speer, M., Pericak-Vance, M. A., Diamond, A., Guttmacher, A. E., Jackson, C. E., Attisano, L., Kucherlapati, R., Porteous, M. E. and Marchuk, D. A. (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189-195. https://doi.org/10.1038/ng0696-189
  75. Gallione, C. J., Richards, J. A., Letteboer, T. G., Rushlow, D., Prigoda, N. L., Leedom, T. P., Ganguly, A., Castells, A., Ploos van Amstel, J. K., Westermann, C. J., Pyeritz, R. E. and Marchuk, D. A. (2006) SMAD4 mutations found in unselected HHT patients. J. Med. Genet. 43, 793-797. https://doi.org/10.1136/jmg.2006.041517
  76. Sabba, C., Pasculli, G., Lenato, G. M., Suppressa, P., Lastella, P., Memeo, M., Dicuonzo, F. and Guant, G. (2007) Hereditary hemorrhagic telangiectasia: clinical features in ENG and ALK1 mutation carriers. J. Thromb. Haemost. 5, 1149-1157. https://doi.org/10.1111/j.1538-7836.2007.02531.x
  77. Oh, S. P., Seki, T., Goss, K. A., Imamura, T., Yi, Y., Donahoe, P. K., Li, L., Miyazono, K., ten Dijke, P., Kim, S. and Li, E. (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 97, 2626-2631. https://doi.org/10.1073/pnas.97.6.2626
  78. Urness, L. D., Sorensen, L. K. and Li, D. Y. (2000) Arteriovenous malformations in mice lacking activin receptor- like kinase-1. Nat. Genet. 26, 328-331. https://doi.org/10.1038/81634
  79. Roman, B. L., Pham, V. N., Lawson, N. D., Kulik, M., Childs, S., Lekven, A. C., Garrity, D. M., Moon, R. T., Fishman, M. C., Lechleider, R. J. and Weinstein, B. M. (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009-3019.
  80. Li, D. Y., Sorensen, L. K., Brooke, B. S., Urness, L. D., Davis, E. C., Taylor, D. G., Boak, B. B. and Wendel, D. P. (1999) Defective angiogenesis in mice lacking endoglin. Science 284, 1534-1537. https://doi.org/10.1126/science.284.5419.1534
  81. Liu, D., Wang, J., Kinzel, B., Mueller, M., Mao, X., Valdez, R., Liu, Y. and Li, E. (2007) Dosage-dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110, 1502-1510. https://doi.org/10.1182/blood-2006-11-058594
  82. Arthur, H. M., Ure, J., Smith, A. J., Renforth, G., Wilson, D. I., Torsney, E., Charlton, R., Parums, D. V., Jowett, T., Marchuk, D. A., Burn, J. and Diamond, A. G. (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev. Biol. 217, 42-53. https://doi.org/10.1006/dbio.1999.9534
  83. Srinivasan, S., Hanes, M. A., Dickens, T., Porteous, M. E., Oh, S. P., Hale, L. P. and Marchuk, D. A. (2003) A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum. Mol. Genet. 12, 473-482. https://doi.org/10.1093/hmg/ddg050
  84. Park, S. O., Lee, Y. J., Seki, T., Hong, K. H., Fliess, N., Jiang, Z., Park, A., Wu, X., Kaartinen, V., Roman, B. L. and Oh, S. P. (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111, 633-642. https://doi.org/10.1182/blood-2007-08-107359
  85. Bourdeau, A., Faughnan, M. E. and Letarte, M. (2000) Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends. Cardiovasc. Med. 10, 279-285. https://doi.org/10.1016/S1050-1738(01)00062-7
  86. Bourdeau, A., Cymerman, U., Paquet, M. E., Meschino, W., McKinnon, W. C., Guttmacher, A. E., Becker, L. and Letarte, M. (2000) Endoglin expression is reduced in normal vessels but still detectable in arteriovenous malformations of patients with hereditary hemorrhagic telangiectasia type 1. Am. J. Pathol. 156, 911-923. https://doi.org/10.1016/S0002-9440(10)64960-7
  87. Mitchell, A., Adams, L. A., MacQuillan, G., Tibballs, J., vanden Driesen, R. and Delriviere, L. (2008) Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver. Transpl. 14, 210-213. https://doi.org/10.1002/lt.21417
  88. Cruikshank, R. P. and Chern, B. W. (2011) Bevacizumab and hereditary haemorrhagic telangiectasia. Med. J. Aust. 194, 324-325.
  89. Machado, R. D., Aldred, M. A., James, V., Harrison, R. E., Patel, B., Schwalbe, E. C., Gruenig, E., Janssen, B., Koehler, R., Seeger, W., Eickelberg, O., Olschewski, H., Elliott, C. G., Glissmeyer, E., Carlquist, J., Kim, M., Torbicki, A., Fijalkowska, A., Szewczyk, G., Parma, J., Abramowicz, M. J., Galie, N., Morisaki, H., Kyotani, S., Nakanishi, N., Morisaki, T., Humbert, M., Simonneau, G., Sitbon, O., Soubrier, F., Coulet, F., Morrell, N. W. and Trembath, R. C. (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat. 27, 121-132. https://doi.org/10.1002/humu.20285
  90. Machado, R. D., Eickelberg, O., Elliott, C. G., Geraci, M. W., Hanaoka, M., Loyd, J. E., Newman, J. H., Phillips, J. A., 3rd, Soubrier, F., Trembath, R. C. and Chung, W. K. (2009) Genetics and genomics of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S32-42. https://doi.org/10.1016/j.jacc.2009.04.015
  91. Lane, K. B., Machado, R. D., Pauciulo, M. W., Thomson, J. R., Phillips, J. A., 3rd, Loyd, J. E., Nichols, W. C. and Trembath, R. C. (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26, 81-84. https://doi.org/10.1038/79226
  92. Thomson, J. R., Machado, R. D., Pauciulo, M. W., Morgan, N. V., Humbert, M., Elliott, G. C., Ward, K., Yacoub, M., Mikhail, G., Rogers, P., Newman, J., Wheeler, L., Higenbottam, T., Gibbs, J. S., Egan, J., Crozier, A., Peacock, A., Allcock, R., Corris, P., Loyd, J. E., Trembath, R. C. and Nichols, W. C. (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J. Med. Genet. 37, 741-745. https://doi.org/10.1136/jmg.37.10.741
  93. Simonneau, G., Galie, N., Rubin, L. J., Langleben, D., Seeger, W., Domenighetti, G., Gibbs, S., Lebrec, D., Speich, R., Beghetti, M., Rich, S. and Fishman, A. (2004) Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 43, S5-12. https://doi.org/10.1016/j.jacc.2004.02.037
  94. Du, L., Sullivan, C. C., Chu, D., Cho, A. J., Kido, M., Wolf, P. L., Yuan, J. X., Deutsch, R., Jamieson, S. W. and Thistlethwaite, P. A. (2003) Signaling molecules in nonfamilial pulmonary hypertension. N. Engl. J. Med. 348, 500-509. https://doi.org/10.1056/NEJMoa021650
  95. Atkinson, C., Stewart, S., Upton, P. D., Machado, R., Thomson, J. R., Trembath, R. C. and Morrell, N. W. (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105, 1672-1678. https://doi.org/10.1161/01.CIR.0000012754.72951.3D
  96. Humbert, M., Deng, Z., Simonneau, G., Barst, R. J., Sitbon, O., Wolf, M., Cuervo, N., Moore, K. J., Hodge, S. E., Knowles, J. A. and Morse, J. H. (2002) BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine derivatives. Eur. Respir. J. 20, 518-523. https://doi.org/10.1183/09031936.02.01762002
  97. Lowery, J. W., Frump, A. L., Anderson, L., DiCarlo, G. E., Jones, M. T. and de Caestecker, M. P. (2010) ID family protein expression and regulation in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1463-1477. https://doi.org/10.1152/ajpregu.00866.2009
  98. Foletta, V. C., Lim, M. A., Soosairajah, J., Kelly, A. P., Stanley, E. G., Shannon, M., He, W., Das, S., Massague, J. and Bernard, O. (2003) Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J. Cell. Biol. 162, 1089-1098. https://doi.org/10.1083/jcb.200212060
  99. Frank, D. B., Lowery, J., Anderson, L., Brink, M., Reese, J. and de Caestecker, M. (2008) Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am. J. Physiol. Lung. Cell. Mol. Physiol. 294, L98-109. https://doi.org/10.1152/ajplung.00034.2007
  100. Hong, K. H., Lee, Y. J., Lee, E., Park, S. O., Han, C., Beppu, H., Li, E., Raizada, M. K., Bloch, K. D. and Oh, S. P. (2008) Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation. 118, 722-730. https://doi.org/10.1161/CIRCULATIONAHA.107.736801
  101. Song, Y., Coleman, L., Shi, J., Beppu, H., Sato, K., Walsh, K., Loscalzo, J. and Zhang, Y. Y. (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am. J. Physiol. Heart Circ. Physiol. 295, H677-690. https://doi.org/10.1152/ajpheart.91519.2007
  102. Song, Y., Jones, J. E., Beppu, H., Keaney, J. F., Jr., Loscalzo, J. and Zhang, Y. Y. (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112, 553-562. https://doi.org/10.1161/CIRCULATIONAHA.104.492488
  103. West, J. (2010) Cross talk between Smad, MAPK, and actin in the etiology of pulmonary arterial hypertension. Adv. Exp. Med. Biol. 661, 265-278. https://doi.org/10.1007/978-1-60761-500-2_17
  104. Reynolds, P. N. (2011) Gene therapy for pulmonary hypertension: prospects and challenges. Expert. Opin. Biol. Ther. 11, 133-143. https://doi.org/10.1517/14712598.2011.542139
  105. Reynolds, P. N. (2011) Viruses in pharmaceutical research: pulmonary vascular disease. Mol. Pharm. 8, 56-64. https://doi.org/10.1021/mp1003477
  106. Yuan, J. X. and Rubin, L. J. (2005) Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation 111, 534-538. https://doi.org/10.1161/01.CIR.0000156326.48823.55
  107. Baliga, R. S., MacAllister, R. J. and Hobbs, A. J. (2011) New perspectives for the treatment of pulmonary hypertension. Br. J. Pharmacol. 163, 125-140. https://doi.org/10.1111/j.1476-5381.2010.01164.x
  108. Pardali, E. and ten Dijke, P. (2009) Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci. 14, 4848-4861. https://doi.org/10.2741/3573
  109. Massague, J. (2008) TGFbeta in Cancer. Cell 134, 215-230. https://doi.org/10.1016/j.cell.2008.07.001
  110. Singh, A. and Morris, R. J. (2010) The Yin and Yang of bone morphogenetic proteins in cancer. Cytokine. Growth. Factor. Rev. 21, 299-313. https://doi.org/10.1016/j.cytogfr.2010.06.003
  111. Wharton, K. and Derynck, R. (2009) TGFbeta family signaling: novel insights in development and disease. Development 136, 3691-3697. https://doi.org/10.1242/dev.040584
  112. Walsh, D. W., Godson, C., Brazil, D. P. and Martin, F. (2010) Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends. Cell Biol. 20, 244-256. https://doi.org/10.1016/j.tcb.2010.01.008
  113. Kleeff, J., Maruyama, H., Ishiwata, T., Sawhney, H., Friess, H., Buchler, M. W. and Korc, M. (1999) Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology 116, 1202-1216. https://doi.org/10.1016/S0016-5085(99)70024-7
  114. Herrera, B., van Dinther, M., Ten Dijke, P. and Inman, G. J. (2009) Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res. 69, 9254-9262. https://doi.org/10.1158/0008-5472.CAN-09-2912
  115. Alarmo, E. L., Parssinen, J., Ketolainen, J. M., Savinainen, K., Karhu, R. and Kallioniemi, A. (2009) BMP7 influences proliferation, migration, and invasion of breast cancer cells. Cancer Lett. 275, 35-43. https://doi.org/10.1016/j.canlet.2008.09.028
  116. Arnold, S. F., Tims, E. and McGrath, B. E. (1999) Identification of bone morphogenetic proteins and their receptors in human breast cancer cell lines: importance of BMP2. Cytokine. 11, 1031-1037. https://doi.org/10.1006/cyto.1999.0508
  117. Ro, T. B., Holt, R. U., Brenne, A. T., Hjorth-Hansen, H., Waage, A., Hjertner, O., Sundan, A. and Borset, M. (2004) Bone morphogenetic protein-5, -6 and -7 inhibit growth and induce apoptosis in human myeloma cells. Oncogene 23, 3024-3032. https://doi.org/10.1038/sj.onc.1207386
  118. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F. and Vescovi, A. L. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour- initiating cells. Nature 444, 761-765. https://doi.org/10.1038/nature05349
  119. Du, J., Yang, S., Wang, Z., Zhai, C., Yuan, W., Lei, R., Zhang, J. and Zhu, T. (2008) Bone morphogenetic protein 6 inhibit stress-induced breast cancer cells apoptosis via both Smad and p38 pathways. J. Cell. Biochem. 103, 1584-1597. https://doi.org/10.1002/jcb.21547
  120. Johnsen, I. K., Kappler, R., Auernhammer, C. J. and Beuschlein, F. (2009) Bone morphogenetic proteins 2 and 5 are down-regulated in adrenocortical carcinoma and modulate adrenal cell proliferation and steroidogenesis. Cancer Res. 69, 5784-5792. https://doi.org/10.1158/0008-5472.CAN-08-4428
  121. Quan, G. M. and Choong, P. F. (2006) Anti-angiogenic therapy for osteosarcoma. Cancer Metastasis Rev. 25, 707-713.
  122. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  123. Bergers, G. and Benjamin, L. E. (2003) Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401-410. https://doi.org/10.1038/nrc1093
  124. Carmeliet, P. (2005) Angiogenesis in life, disease and medicine. Nature 438, 932-936. https://doi.org/10.1038/nature04478
  125. Carmeliet, P. (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology (Williston Park). 69(Suppl 3), 4-10. https://doi.org/10.1159/000088478
  126. David, L., Feige, J. J. and Bailly, S. (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine. Growth. Factor Rev. 20, 203-212. https://doi.org/10.1016/j.cytogfr.2009.05.001
  127. Langenfeld, E. M. and Langenfeld, J. (2004) Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol. Cancer Res. 2, 141-149.
  128. Valdimarsdottir, G., Goumans, M. J., Rosendahl, A., Brugman, M., Itoh, S., Lebrin, F., Sideras, P. and ten Dijke, P. (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106, 2263-2270. https://doi.org/10.1161/01.CIR.0000033830.36431.46
  129. Raida, M., Clement, J. H., Leek, R. D., Ameri, K., Bicknell, R., Niederwieser, D. and Harris, A. L. (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J. Cancer Res. Clin. Oncol. 131, 741-750. https://doi.org/10.1007/s00432-005-0024-1
  130. Peng, H., Usas, A., Olshanski, A., Ho, A. M., Gearhart, B., Cooper, G. M. and Huard, J. (2005) VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res. 20, 2017-2027. https://doi.org/10.1359/JBMR.050708
  131. Rothhammer, T., Bataille, F., Spruss, T., Eissner, G. and Bosserhoff, A. K. (2007) Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26, 4158-4170. https://doi.org/10.1038/sj.onc.1210182
  132. Smadja, D. M., Bieche, I., Silvestre, J. S., Germain, S., Cornet, A., Laurendeau, I., Duong-Van-Huyen, J. P., Emmerich, J., Vidaud, M., Aiach, M. and Gaussem, P. (2008) Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler. Thromb. Vasc. Biol. 28, 2137-2143. https://doi.org/10.1161/ATVBAHA.108.168815
  133. Bieniasz, M., Oszajca, K., Eusebio, M., Kordiak, J., Bartkowiak, J. and Szemraj, J. (2009) The positive correlation between gene expression of the two angiogenic factors: VEGF and BMP-2 in lung cancer patients. Lung Cancer 66, 319-326. https://doi.org/10.1016/j.lungcan.2009.02.020
  134. Moreno-Miralles, I., Schisler, J. C. and Patterson, C. (2009) New insights into bone morphogenetic protein signaling: focus on angiogenesis. Curr. Opin. Hematol. 16, 195-201. https://doi.org/10.1097/MOH.0b013e32832a07d6
  135. Nimmagadda, S., Geetha Loganathan, P., Huang, R., Scaal, M., Schmidt, C. and Christ, B. (2005) BMP4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quek1) expression. Dev. Biol. 280, 100-110. https://doi.org/10.1016/j.ydbio.2005.01.005
  136. Scharpfenecker, M., van Dinther, M., Liu, Z., van Bezooijen, R. L., Zhao, Q., Pukac, L., Lowik, C. W. and ten Dijke, P. (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGFstimulated angiogenesis. J. Cell. Sci. 120, 964-972. https://doi.org/10.1242/jcs.002949
  137. David, L., Mallet, C., Keramidas, M., Lamande, N., Gasc, J. M., Dupuis-Girod, S., Plauchu, H., Feige, J. J. and Bailly, S. (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 102, 914-922. https://doi.org/10.1161/CIRCRESAHA.107.165530
  138. Liu, Z., Kobayashi, K., van Dinther, M., van Heiningen, S. H., Valdimarsdottir, G., van Laar, T., Scharpfenecker, M., Lowik, C. W., Goumans, M. J., Ten Dijke, P. and Pardali, E. (2009) VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J. Cell. Sci. 122, 3294-3302. https://doi.org/10.1242/jcs.048942
  139. Mitchell, D., Pobre, E. G., Mulivor, A. W., Grinberg, A. V., Castonguay, R., Monnell, T. E., Solban, N., Ucran, J. A., Pearsall, R. S., Underwood, K. W., Seehra, J. and Kumar, R. (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol. Cancer. Ther. 9, 379-388. https://doi.org/10.1158/1535-7163.MCT-09-0650
  140. Mitchell, D. C. and Bryan, B. A. (2010) Anti-angiogenic therapy: adapting strategies to overcome resistant tumors. J. Cell Biochem. 111, 543-553. https://doi.org/10.1002/jcb.22764
  141. Hay, E. D. and Zuk, A. (1995) Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am. J. Kidney. Dis. 26, 678-690. https://doi.org/10.1016/0272-6386(95)90610-X
  142. Klymkowsky, M. W. and Savagner, P. (2009) Epithelialmesenchymal transition: a cancer researcher's conceptual friend and foe. Am. J. Pathol. 174, 1588-1593. https://doi.org/10.2353/ajpath.2009.080545
  143. Polyak, K. and Weinberg, R. A. (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer. 9, 265-273. https://doi.org/10.1038/nrc2620
  144. Thiery, J. P., Acloque, H., Huang, R. Y. and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890. https://doi.org/10.1016/j.cell.2009.11.007
  145. Yilmaz, M. and Christofori, G. (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer. Metastasis. Rev. 28, 15-33. https://doi.org/10.1007/s10555-008-9169-0
  146. Barrallo-Gimeno, A. and Nieto, M. A. (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151-3161. https://doi.org/10.1242/dev.01907
  147. Sethi, N. and Kang, Y. (2011) Dysregulation of developmental pathways in bone metastasis. Bone 48, 16-22. https://doi.org/10.1016/j.bone.2010.07.005
  148. Ma, L., Lu, M. F., Schwartz, R. J. and Martin, J. F. (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601-5611. https://doi.org/10.1242/dev.02156
  149. Theriault, B. L., Shepherd, T. G., Mujoomdar, M. L. and Nachtigal, M. W. (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis. 28, 1153-1162. https://doi.org/10.1093/carcin/bgm015
  150. Feeley, B. T., Krenek, L., Liu, N., Hsu, W. K., Gamradt, S. C., Schwarz, E. M., Huard, J. and Lieberman, J. R. (2006) Overexpression of noggin inhibits BMP-mediated growth of osteolytic prostate cancer lesions. Bone 38, 154-166. https://doi.org/10.1016/j.bone.2005.07.015
  151. Clement, J. H., Raida, M., Sanger, J., Bicknell, R., Liu, J., Naumann, A., Geyer, A., Waldau, A., Hortschansky, P., Schmidt, A., Hoffken, K., Wolft, S. and Harris, A. L. (2005) Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int. J. Oncol. 27, 401-407.
  152. Katsuno, Y., Hanyu, A., Kanda, H., Ishikawa, Y., Akiyama, F., Iwase, T., Ogata, E., Ehata, S., Miyazono, K. and Imamura, T. (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27, 6322-6333. https://doi.org/10.1038/onc.2008.232
  153. Moreau, J. E., Anderson, K., Mauney, J. R., Nguyen, T., Kaplan, D. L. and Rosenblatt, M. (2007) Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res. 67, 10304-10308. https://doi.org/10.1158/0008-5472.CAN-07-2483
  154. Deng, H., Ravikumar, T. S. and Yang, W. L. (2007) Bone morphogenetic protein-4 inhibits heat-induced apoptosis by modulating MAPK pathways in human colon cancer HCT116 cells. Cancer Lett. 256, 207-217. https://doi.org/10.1016/j.canlet.2007.06.008
  155. Kang, M. H., Kim, J. S., Seo, J. E., Oh, S. C. and Yoo, Y. A. (2010) BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp. Cell. Res. 316, 24-37. https://doi.org/10.1016/j.yexcr.2009.10.010
  156. Orr, F. W., Sanchez-Sweatman, O. H., Kostenuik, P. and Singh, G. (1995) Tumor-bone interactions in skeletal metastasis. Clin. Orthop. Relat. Res. 312, 19-33.
  157. Mundy, G. R. (1997) Mechanisms of bone metastasis. Cancer 80, 1546-1556. https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8+<1546::AID-CNCR4>3.0.CO;2-I
  158. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J. and Thun, M. J. (2009) Cancer statistics, 2009. CA. Cancer. J. Clin. 59, 225-249. https://doi.org/10.3322/caac.20006
  159. Coleman, R. E. (1997) Skeletal complications of malignancy. Cancer 80, 1588-1594. https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8+<1588::AID-CNCR9>3.0.CO;2-G
  160. Galasko, C. S. (1986) Skeletal metastases. Clin. Orthop. Relat. Res. 210, 18-30.
  161. Bussard, K. M., Gay, C. V. and Mastro, A. M. (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis. Rev. 27, 41-55. https://doi.org/10.1007/s10555-007-9109-4
  162. Davies, S. R., Watkins, G., Douglas-Jones, A., Mansel, R. E. and Jiang, W. G. (2008) Bone morphogenetic proteins 1 to 7 in human breast cancer, expression pattern and clinical/prognostic relevance. J. Exp. Ther. Oncol. 7, 327-338.
  163. McMurtry, I. F. (2002) Introduction: pre- and postnatal lung development, maturation, and plasticity. Am. J. Physiol. Lung. Cell. Mol. Physiol. 282, L341-344. https://doi.org/10.1152/ajplung.00445.2001
  164. Mundy, G. R. (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584-593. https://doi.org/10.1038/nrc867
  165. Ye, L., Mason, M. D. and Jiang, W. G. (2011) Bone morphogenetic protein and bone metastasis, implication and therapeutic potential. Front Biosci. 16, 865-897. https://doi.org/10.2741/3725
  166. Roodman, G. D. (2004) Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655-1664. https://doi.org/10.1056/NEJMra030831
  167. Lu, X. and Kang, Y. (2010) Epidermal growth factor signalling and bone metastasis. Br. J. Cancer 102, 457-461. https://doi.org/10.1038/sj.bjc.6605490
  168. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A. and Massague, J. (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3, 537-549. https://doi.org/10.1016/S1535-6108(03)00132-6
  169. Mastro, A. M., Gay, C. V. and Welch, D. R. (2003) The skeleton as a unique environment for breast cancer cells. Clin. Exp. Metastasis. 20, 275-284. https://doi.org/10.1023/A:1022995403081
  170. Schneider, A., Kalikin, L. M., Mattos, A. C., Keller, E. T., Allen, M. J., Pienta, K. J. and McCauley, L. K. (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146, 1727-1736. https://doi.org/10.1210/en.2004-1211
  171. Senta, H., Park, H., Bergeron, E., Drevelle, O., Fong, D., Leblanc, E., Cabana, F., Roux, S., Grenier, G. and Faucheux, N. (2009) Cell responses to bone morphogenetic proteins and peptides derived from them: biomedical applications and limitations. Cytokine. Growth. Factor. Rev. 20, 213-222. https://doi.org/10.1016/j.cytogfr.2009.05.006
  172. Graham, T. R., Agrawal, K. C. and Abdel-Mageed, A. B. (2010) Independent and cooperative roles of tumor necrosis factor-alpha, nuclear factor-kappaB, and bone morphogenetic protein-2 in regulation of metastasis and osteomimicry of prostate cancer cells and differentiation and mineralization of MC3T3-E1 osteoblast-like cells. Cancer Sci. 101, 103-111. https://doi.org/10.1111/j.1349-7006.2009.01356.x
  173. Rucci, N. and Teti, A. (2010) Osteomimicry: how tumor cells try to deceive the bone. Front. Biosci (Elite Ed). 2, 907-915.
  174. Bailey, J. M., Singh, P. K. and Hollingsworth, M. A. (2007) Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J. Cell. Biochem. 102, 829-839. https://doi.org/10.1002/jcb.21509
  175. Kalluri, R. and Zeisberg, M. (2006) Fibroblasts in cancer. Nat. Rev. Cancer 6, 392-401. https://doi.org/10.1038/nrc1877
  176. Cooper, C. R., Chay, C. H., Gendernalik, J. D., Lee, H. L., Bhatia, J., Taichman, R. S., McCauley, L. K., Keller, E. T. and Pienta, K. J. (2003) Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 97, 739-747. https://doi.org/10.1002/cncr.11181
  177. Spradling, A., Drummond-Barbosa, D. and Kai, T. (2001) Stem cells find their niche. Nature 414, 98-104. https://doi.org/10.1038/35102160
  178. Blanco Calvo, M., Bolos Fernandez, V., Medina Villaamil, V., Aparicio Gallego, G., Diaz Prado, S. and Grande Pulido, E. (2009) Biology of BMP signalling and cancer. Clin. Transl. Oncol. 11, 126-137. https://doi.org/10.1007/S12094-009-0328-8
  179. Qiao, B., Johnson, N. W., Chen, X., Li, R., Tao, Q. and Gao, J. (2011) Disclosure of a stem cell phenotype in an oral squamous cell carcinoma cell line induced by BMP-4 via an epithelial-mesenchymal transition. Oncol. Rep. 26, 455-461.
  180. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J. and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715. https://doi.org/10.1016/j.cell.2008.03.027
  181. Carlson, M. E. and Conboy, I. M. (2007) Regulating the Notch pathway in embryonic, adult and old stem cells. Curr. Opin. Pharmacol. 7, 303-309. https://doi.org/10.1016/j.coph.2007.02.004
  182. Zhang, M. and Rosen, J. M. (2006) Stem cells in the etiology and treatment of cancer. Curr. Opin. Genet. Dev. 16, 60-64. https://doi.org/10.1016/j.gde.2005.12.008
  183. Katoh, M. (2011) Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr. Pharm. Biotechnol. 12, 160-170. https://doi.org/10.2174/138920111794295710
  184. Katoh, M. (2007) Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem. Cell. Rev. 3, 30-38. https://doi.org/10.1007/s12015-007-0006-6
  185. Lombardo, Y., Scopelliti, A., Cammareri, P., Todaro, M., Iovino, F., Ricci-Vitiani, L., Gulotta, G., Dieli, F., de Maria, R. and Stassi, G. (2011) Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140, 297-309. https://doi.org/10.1053/j.gastro.2010.10.005
  186. Yauch, R. L., Gould, S. E., Scales, S. J., Tang, T., Tian, H., Ahn, C. P., Marshall, D., Fu, L., Januario, T., Kallop, D., Nannini-Pepe, M., Kotkow, K., Marsters, J. C., Rubin, L. L. and de Sauvage, F. J. (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406-410. https://doi.org/10.1038/nature07275
  187. Von Hoff, D. D., LoRusso, P. M., Rudin, C. M., Reddy, J. C., Yauch, R. L., Tibes, R., Weiss, G. J., Borad, M. J., Hann, C. L., Brahmer, J. R., Mackey, H. M., Lum, B. L., Darbonne, W. C., Marsters, J. C. Jr., de Sauvage, F. J. and Low, J. A. (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164-1172. https://doi.org/10.1056/NEJMoa0905360
  188. Yu, P. B., Hong, C. C., Sachidanandan, C., Babitt, J. L., Deng, D. Y., Hoyng, S. A., Lin, H. Y., Bloch, K. D. and Peterson, R. T. (2008) Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33-41. https://doi.org/10.1038/nchembio.2007.54
  189. Jiang, W. G., Martin, T. A., Lewis-Russell, J. M., Douglas- Jones, A., Ye, L. and Mansel, R. E. (2008) Eplin-alpha expression in human breast cancer, the impact on cellular migration and clinical outcome. Mol. Cancer 7, 71.
  190. Ye, L., Kynaston, H. and Jiang, W. G. (2008) Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Mol. Cancer Res. 6, 1594-1606. https://doi.org/10.1158/1541-7786.MCR-08-0171
  191. Ong, K. L., Villarraga, M. L., Lau, E., Carreon, L. Y., Kurtz, S. M. and Glassman, S. D. (2010) Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine (Phila Pa 1976). 35, 1794-1800. https://doi.org/10.1097/BRS.0b013e3181ecf6e4
  192. Thawani, J. P., Wang, A. C., Than, K. D., Lin, C. Y., La Marca, F. and Park, P. (2010) Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 66, 233-246. https://doi.org/10.1227/01.NEU.0000363722.42097.C2
  193. Poynton, A. R. and Lane, J. M. (2002) Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976). 27, S40-48. https://doi.org/10.1097/00007632-200208151-00010
  194. Sundaresan, N., Boriani, S., Rothman, A. and Holtzman, R. (2004) Tumors of the osseous spine. J. Neurooncol. 69, 273-290. https://doi.org/10.1023/B:NEON.0000041888.33499.03
  195. Benglis, D., Wang, M. Y. and Levi, A. D. (2008) A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 62, ONS-423-431.
  196. Nakashima, M. and Reddi, A. H. (2003) The application of bone morphogenetic proteins to dental tissue engineering. Nat. Biotechnol. 21, 1025-1032. https://doi.org/10.1038/nbt864
  197. Seeherman, H. and Wozney, J. M. (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine. Growth. Factor. Rev. 16, 329-345. https://doi.org/10.1016/j.cytogfr.2005.05.001
  198. Bessa, P. C., Casal, M. and Reis, R. L. (2008) Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J. Tissue. Eng. Regen. Med. 2, 1-13. https://doi.org/10.1002/term.63
  199. Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., Hewick, R. M. and Wang, E. A. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242, 1528-1534. https://doi.org/10.1126/science.3201241
  200. Schmidmaier, G., Schwabe, P., Strobel, C. and Wildemann, B. (2008) Carrier systems and application of growth factors in orthopaedics. Injury 39(Suppl 2), S37-43.
  201. Gottfried, O. N. and Dailey, A. T. (2008) Mesenchymal stem cell and gene therapies for spinal fusion. Neurosurgery 63, 380-391. https://doi.org/10.1227/01.NEU.0000324990.04818.13
  202. Alaoui-Ismaili, M. H. and Falb, D. (2009) Design of second generation therapeutic recombinant bone morphogenetic proteins. Cytokine. Growth. Factor. Rev. 20, 501-507. https://doi.org/10.1016/j.cytogfr.2009.10.001
  203. Allendorph, G. P., Read, J. D., Kawakami, Y., Kelber, J. A., Isaacs, M. J. and Choe, S. (2011) Designer TGF-beta superfamily ligands with diversified functionality. PLoS One., In press.
  204. Saito, A., Suzuki, Y., Ogata, S., Ohtsuki, C. and Tanihara, M. (2003) Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim. Biophys. Acta. 1651, 60-67. https://doi.org/10.1016/S1570-9639(03)00235-8
  205. Bergeron, E., Marquis, M. E., Chretien, I. and Faucheux, N. (2007) Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J. Mater. Sci. Mater. Med. 18, 255-263. https://doi.org/10.1007/s10856-006-0687-4
  206. Geiger, M., Li, R. H. and Friess, W. (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv. Drug. Deliv. Rev. 55, 1613-1629. https://doi.org/10.1016/j.addr.2003.08.010
  207. Uludag, H., Friess, W., Williams, D., Porter, T., Timony, G., D'Augusta, D., Blake, C., Palmer, R., Biron, B. and Wozney, J. (1999) rhBMP-collagen sponges as osteoinductive devices: effects of in vitro sponge characteristics and protein pI on in vivo rhBMP pharmacokinetics. Ann. N. Y. Acad. Sci. 875, 369-378. https://doi.org/10.1111/j.1749-6632.1999.tb08519.x
  208. Kempen, D. H., Lu, L., Hefferan, T. E., Creemers, L. B., Maran, A., Classic, K. L., Dhert, W. J. and Yaszemski, M. J. (2008) Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials. 29, 3245-3252. https://doi.org/10.1016/j.biomaterials.2008.04.031
  209. Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., Labrude, P. and Vigneron, C. (1998) Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release. 50, 31-40. https://doi.org/10.1016/S0168-3659(97)00106-5
  210. Franceschi, R. T. (2005) Biological approaches to bone regeneration by gene therapy. J. Dent. Res. 84, 1093-1103. https://doi.org/10.1177/154405910508401204
  211. Li, H. Y., Neill, H., Innocent, R., Seville, P., Williamson, I. and Birchall, J. C. (2003) Enhanced dispersibility and deposition of spray-dried powders for pulmonary gene therapy. J. Drug. Target. 11, 425-432. https://doi.org/10.1080/10611860410001659786

Cited by

  1. Ossified choroid plexus papilloma of the fourth ventricle: elucidation of the mechanism of osteogenesis in benign brain tumors vol.12, pp.1, 2013, https://doi.org/10.3171/2013.3.PEDS12400
  2. Injection and adhesion palatoplasty: a preliminary study in a canine model vol.183, pp.2, 2013, https://doi.org/10.1016/j.jss.2013.03.009
  3. BMP9 Is a Proliferative and Survival Factor for Human Hepatocellular Carcinoma Cells vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0069535
  4. Bone morphogenetic protein 2 promotes osteogenesis of bone marrow stromal cells in type 2 diabetic rats via the Wnt signaling pathway vol.80, 2016, https://doi.org/10.1016/j.biocel.2016.09.025
  5. Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis vol.9, pp.4, 2015, https://doi.org/10.2217/bmm.15.4
  6. BMP7 Gene Transfer via Gold Nanoparticles into Stroma Inhibits Corneal Fibrosis In Vivo vol.8, pp.6, 2013, https://doi.org/10.1371/journal.pone.0066434
  7. Association of Genetic Variants ofBMP4with Type 2 Diabetes Mellitus and Clinical Traits in a Chinese Han Population vol.2013, 2013, https://doi.org/10.1155/2013/238150
  8. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma vol.2014, 2014, https://doi.org/10.1155/2014/549742
  9. The activin- β A/BMP-2 chimera AB204 is a strong stimulator of adipogenesis vol.11, pp.5, 2017, https://doi.org/10.1002/term.2050
  10. Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy vol.70, pp.3, 2013, https://doi.org/10.1007/s00018-012-1054-x
  11. Annexin-enriched osteoblast-derived vesicles act as an extracellular site of mineral nucleation within developing stem cell cultures vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-13027-6
  12. Effects of bioactive glass S53P4 or beta-tricalcium phosphate and bone morphogenetic protein-2 and bone morphogenetic protein-7 on osteogenic differentiation of human adipose stem cells vol.3, pp.1, 2012, https://doi.org/10.1177/2041731412467789
  13. Contextual effect of repression of bone morphogenetic protein activity in prostate cancer vol.20, pp.6, 2013, https://doi.org/10.1530/ERC-13-0100
  14. Reconstruction of radial bone defect using gelatin sponge and a BMP-2 combination graft vol.46, pp.6, 2013, https://doi.org/10.5483/BMBRep.2013.46.6.231
  15. An operational view of intercellular signaling pathways vol.1, 2017, https://doi.org/10.1016/j.coisb.2016.12.003
  16. Osteoblastic differentiation and cell calcification of adamantinomatous craniopharyngioma induced by bone morphogenetic protein-2 vol.18, pp.2, 2017, https://doi.org/10.3233/CBM-161576
  17. Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells vol.114, pp.8, 2013, https://doi.org/10.1002/jcb.24519
  18. Combinatorial Signal Perception in the BMP Pathway vol.170, pp.6, 2017, https://doi.org/10.1016/j.cell.2017.08.015
  19. Anti-wrinkle effect of bone morphogenetic protein receptor 1a-extracellular domain (BMPR1a-ECD) vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.238
  20. Segmental mandibular bone reconstruction with a carbonate-substituted hydroxyapatite-coated modular endoprosthetic poly(ɛ-caprolactone) scaffold inMacaca fascicularis vol.102, pp.5, 2014, https://doi.org/10.1002/jbm.b.33077
  21. Low-intensity pulsed ultrasound enhances bone morphogenetic protein expression of human mandibular fracture haematoma-derived cells vol.44, pp.7, 2015, https://doi.org/10.1016/j.ijom.2015.03.001
  22. Genetic variation in bone morphogenetic proteins and breast cancer risk in hispanic and non-hispanic white women: The breast cancer health disparities study vol.132, pp.12, 2013, https://doi.org/10.1002/ijc.27960
  23. Demineralized dentin matrix composite collagen material for bone tissue regeneration vol.24, pp.13, 2013, https://doi.org/10.1080/09205063.2013.777227
  24. Bone morphogenetic protein 9 regulates tumor growth of osteosarcoma cells through the Wnt/β-catenin pathway vol.31, pp.2, 2014, https://doi.org/10.3892/or.2013.2931
  25. Cancer After Spinal Fusion vol.73, pp.3, 2013, https://doi.org/10.1227/NEU.0000000000000018
  26. The influence of genetic ancestry and ethnicity on breast cancer survival associated with genetic variation in the TGF-β-signaling pathway: The Breast Cancer Health Disparities Study vol.25, pp.3, 2014, https://doi.org/10.1007/s10552-013-0331-9
  27. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders vol.2, pp.5, 2014, https://doi.org/10.1016/S2213-8587(14)70059-2
  28. Over-sulfated chondroitin sulfate Derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signalling vol.228, pp.2, 2013, https://doi.org/10.1002/jcp.24135
  29. Effective treatment of a steroid-induced femoral neck fracture nonunion with a once-weekly administration of teriparatide in a rheumatoid patient: a case report vol.8, pp.1-2, 2013, https://doi.org/10.1007/s11657-013-0131-6
  30. Cellular behavior as a dynamic field for exploring bone bioengineering: A closer look at cell–biomaterial interface vol.561, 2014, https://doi.org/10.1016/j.abb.2014.06.019
  31. Bone morphogenetic protein 2 inhibits hepatocellular carcinoma growth and migration through downregulation of the PI3K/AKT pathway vol.35, pp.6, 2014, https://doi.org/10.1007/s13277-014-1673-y
  32. Bone morphogenetic protein 9 overexpression reduces osteosarcoma cell migration and invasion vol.36, pp.2, 2013, https://doi.org/10.1007/s10059-013-0043-8
  33. Recombinant Human Bone Morphogenetic Protein-2 in Posterolateral Spinal Fusion: What's the Right Dose? vol.10, pp.3, 2016, https://doi.org/10.4184/asj.2016.10.3.457
  34. Hypoxia Stress Response Pathways: Modeling and Targeted Therapy vol.21, pp.3, 2017, https://doi.org/10.1109/JBHI.2016.2559460
  35. Angiogenesis and bone regeneration by allogeneic mesenchymal stem cell intravenous transplantation in rabbit model of avascular necrotic femoral head vol.183, pp.1, 2013, https://doi.org/10.1016/j.jss.2012.11.031
  36. Inhibitory effect of BMP-2 on the proliferation of breast cancer cells vol.6, pp.3, 2012, https://doi.org/10.3892/mmr.2012.962
  37. Adenovirus-mediated overexpression of BMP-9 inhibits human osteosarcoma cell growth and migration through downregulation of the PI3K/AKT pathway vol.41, pp.5, 2012, https://doi.org/10.3892/ijo.2012.1617
  38. Adenovirus Mediated Knockdown and Bone Morphogenetic Protein 2 Inhibits Human Lung Cancer Growth and Invasion In Vitro and in Vivo vol.25, pp.4, 2012, https://doi.org/10.1177/039463201202500414
  39. Bone morphogenetic protein-5 and early endothelial outgrowth cells (eEOCs) in acute ischemic kidney injury (AKI) and 5/6-chronic kidney disease vol.305, pp.3, 2013, https://doi.org/10.1152/ajprenal.00677.2012
  40. Optimizing Osteogenic Differentiation of Ovine Adipose-Derived Stem Cells by Osteogenic Induction Medium and FGFb, BMP2, or NELL1 In Vitro vol.2018, pp.1687-9678, 2018, https://doi.org/10.1155/2018/9781393
  41. BMP9 (Bone Morphogenetic Protein-9)/Alk1 (Activin-Like Kinase Receptor Type I) Signaling Prevents Hyperglycemia-Induced Vascular Permeability vol.38, pp.8, 2018, https://doi.org/10.1161/ATVBAHA.118.310733