DOI QR코드

DOI QR Code

전기도금법으로 제작한 CoPt 자성막의 자기상호작용과 자기적 성질

Magnetic Interaction and Magnetic Properties of Electrodeposited CoPt Magnetic Films with Different Thickness

  • 김현수 (경상대학교 자연과학대학 물리학과 및 기초과학 연구소) ;
  • 이종덕 (경상대학교 자연과학대학 물리학과 및 기초과학 연구소) ;
  • 정순영 (경상대학교 자연과학대학 물리학과 및 기초과학 연구소) ;
  • 이창형 (성균관대학교 공과대학 신소재공학부) ;
  • 서수정 (성균관대학교 공과대학 신소재공학부)
  • Kim, Hyeon-Soo (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Duck (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jeong, Soon-Young (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Chang-Hyeong (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Suh, Su-Jeong (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2011.07.30
  • 심사 : 2011.10.19
  • 발행 : 2011.10.31

초록

전기도금법으로 제작한 CoPt 자성막의 두께가 자기상호작용과 자기적 성질에 미치는 영향을 잔류자기화 곡선과 자기이력 곡선을 측정 분석하여 규명하였다. CoPt 자성막의 두께가 증가함에 따라 수직 보자력과 포화자화가 증가하였으나 각형비는 급격히 감소하였다. 잔류자화 곡선의 분석결과로부터 모든 시료의 주된 자기상호작용 기구는 쌍극자 상호작용이며, 시료의 두께가 증가함에 따라 상호작용의 세기가 증가함을 알 수 있었다.

The influence of thickness on magnetic interaction and magnetic properties in electrodeposited CoPt magnetic films was investigated from the analysis of the magnetic remanence curves and the magnetic hysteresis loops. As the thickness of the CoPt film is increased, the perpendicular coercivity and the saturation magnetization are increased but the squareness is considerably decreased. The analysis results of the magnetic remanence curves and the magnetic hysteresis loops exhibited that the dipolar interaction is the main interaction mechanism for all samples, but the strength of the dipolar interaction gradually increased with increasing sample thickness.

키워드

참고문헌

  1. S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 31, 2737(1995). https://doi.org/10.1109/20.490108
  2. K. H. Lee, S. W. Kang, G. H. Kim, and W. Y. Jeung, J. Magn. Magn. Mater. 272-276, e925 (2004). https://doi.org/10.1016/j.jmmm.2003.12.1015
  3. M. Corts, S. Matencio, E. Gmez, and E. Valls, J. Magn. Magn. Mater. 627, 69 (2009).
  4. F. M. F. Rhen, G. Hinds, C. O'Reilly, and J. M. D. Coey, IEEE Trans. Magn. 39, 2699 (2003). https://doi.org/10.1109/TMAG.2003.815566
  5. F. M. F. Rhen and J. M. D. Coey, J. Magn. Magn. Mater. 322, 1572 (2010). https://doi.org/10.1016/j.jmmm.2009.09.027
  6. S. Franz, M. Bestetti, and P. L. Cavallotti, J. Magn. Magn. Mater. 316, e173 (2007). https://doi.org/10.1016/j.jmmm.2007.02.071
  7. M. Ghidini, G. Zangari, I. L. Prejbeanu, G. Pattanaik, L. D. Buda-Prejbeanu, G. Asti, C. Pernechele, and M. Solzi, J. Appl. Phys. 100, 103911 (2006). https://doi.org/10.1063/1.2357869
  8. W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, and H. Y. Lee, J. Magn. Magn. Mater. 303, e243 (2006). https://doi.org/10.1016/j.jmmm.2006.01.049
  9. F. M. F. Rhen and J. M. D. Coey, J. Magn. Magn. Mater. 272-276, e883 (2004). https://doi.org/10.1016/j.jmmm.2003.12.207
  10. G. Zangari, P. Bucher, N. Lecis, P. L. Cavallotti, L. Callegaro, and E. Puppin, J. Magn. Magn. Mater. 157/158, 256 (1996). https://doi.org/10.1016/0304-8853(95)01099-8
  11. M. L. Yan, Y. Liu, S. H. Liou, and D. J. Sellmyer, IEEE Trans. Magn. 37, 1671 (2001). https://doi.org/10.1109/20.950933
  12. M. Yu, Y. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6959 (2000). https://doi.org/10.1063/1.372899
  13. L. Callegaro, E. Puppin, P. L. Cavallotti, and G. Zangari, J. Magn. Magn., Mater. 155, 190 (1996). https://doi.org/10.1016/0304-8853(95)00735-0
  14. I. Zana, G. Zangari, and M. Shamsuzzoha, J. Electrochem. Soc. 151, C637 (2004). https://doi.org/10.1149/1.1793911
  15. G. Pattanaik and G. Zangari, J. Electrochem. Soc. 153, C6 (2006). https://doi.org/10.1149/1.2128106
  16. I. Zana and G. Zangari, J. Magn. Magn. Mater. 272-276, 1698 (2004). https://doi.org/10.1016/j.jmmm.2003.12.262
  17. C. L. Shen, P. C. Kuo, G. P. Lin, Y. S. Lui, S. L. Ou, and S. C. Chen, Advanced Materials Research 123-125, 655 (2010). https://doi.org/10.4028/www.scientific.net/AMR.123-125.655
  18. G. H. Jeong, C. H. Lee, J. H. Jang, N. J. Park, and S. J. Suh, J. Magn. Magn. Mater. 320, 2985 (2008). https://doi.org/10.1016/j.jmmm.2008.08.095
  19. H. Kronmller, K. D. Durst, and M. Sagawa, J. Magn. Magn. Mater. 74, 291 (1988). https://doi.org/10.1016/0304-8853(88)90202-8
  20. A. R. Corradi and E. P. Wohlfarth, IEEE Trans. Magn. 14, 861 (1978). https://doi.org/10.1109/TMAG.1978.1059788
  21. O. Henkel, Phys. Status Solid. 7, 919 (1964). https://doi.org/10.1002/pssb.19640070320
  22. P. E. Kelly, K. O'Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. 25, 3881 (1989). https://doi.org/10.1109/20.42466
  23. P. I. Mayo, K. O'Grady, R. W. Chantrell, J. A. Cambridge, I. L. Sanders, T. Yogi, and J. K. Howard, J. Magn. Magn. Mater. 95, 109 (1991). https://doi.org/10.1016/0304-8853(91)90221-U
  24. E. M. T. Velu and D. N. Lambeth, IEEE Trans. Magn. 28, 3249 (1992). https://doi.org/10.1109/20.179774
  25. E. W. Singleton, Z. S. Shan, S. Y. Jeong, and D. J. Sellmyer, IEEE Trans. Magn. 31, 2743 (1995). https://doi.org/10.1109/20.490137

피인용 문헌

  1. Magnetic Interaction Effect on Activation Volume and Area of CoPt Magnetic Films vol.23, pp.6, 2013, https://doi.org/10.4283/JKMS.2013.23.6.188