DOI QR코드

DOI QR Code

MULTIPLE SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL GROWTH

  • Wang, Youjun (Department of Mathematical Sciences Tsinghua University)
  • Received : 2010.07.21
  • Published : 2011.11.01

Abstract

For a class of quasilinear elliptic equations we establish the existence of multiple solutions by variational methods.

Keywords

References

  1. M. J. Alves, P. C. Carriao, and O. H. Miyagaki, Non-autonomous perturbations for a class of quasilinear elliptic equations on R, J. Math. Anal. Appl. 344 (2008), no. 1, 186-203. https://doi.org/10.1016/j.jmaa.2008.02.055
  2. J. G. Azorero and I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), no. 2, 877-895. https://doi.org/10.2307/2001562
  3. L. Bocardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), no. 6, 581-597. https://doi.org/10.1016/0362-546X(92)90023-8
  4. J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), no. 4, 493-512. https://doi.org/10.1007/BF01187898
  5. M. Colin and L. Jeanjean, Solutions for a quasilinear Schrodinger equations: a dual approach, Nonlinear Anal. 56 (2004), no. 2, 213-226. https://doi.org/10.1016/j.na.2003.09.008
  6. M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, Elmsford, NY, 1964.
  7. S. Kurihura, Large amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), 3262-3267. https://doi.org/10.1143/JPSJ.50.3262
  8. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, 2, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 2, 109-145 https://doi.org/10.1016/S0294-1449(16)30428-0
  9. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, 2, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 4, 223-283. https://doi.org/10.1016/S0294-1449(16)30422-X
  10. J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrodinger equations. I, Proc. Amer. Math. Soc. 131 (2003), no. 2, 441-448. https://doi.org/10.1090/S0002-9939-02-06783-7
  11. J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, Soliton solutions to quasilinear Schrodinger equations. II, J. Differential Equations 187 (2003), no. 2, 473-493. https://doi.org/10.1016/S0022-0396(02)00064-5
  12. J. Q. Liu, Y. Q. Wang, and Z. Q. Wang, Solutions for quasilinear Schrodinge equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), no. 5-6, 879-901. https://doi.org/10.1081/PDE-120037335
  13. A. Moameni, Existence of soliton solutions for a quasilinear Schrodinger quation involving critical exponent in $R^{N}$, J. Differential Equations 229 (2006), no. 2, 570-587. https://doi.org/10.1016/j.jde.2006.07.001
  14. A. Nakamura, Damping and modification of exciton solitary waves, J. Phys. Soc. Japan 42 (1977), 1824-1835. https://doi.org/10.1143/JPSJ.42.1824
  15. J. M. do O, O. Miyagaki, and H. Olimpio, Soliton solutions for quasilinear Schrodinger equations with critical growth, J. Differential Equations 248 (2010), no. 4, 722-744. https://doi.org/10.1016/j.jde.2009.11.030
  16. I. Peral, Multiplicity of solutions for the p-Laplacian, in: A. Ambrosetti, K. C. Chang, I. Eklend (Eds.), Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP, Trieste, (1997), 153-202.
  17. M. Poppenberg, K. Schmitt, and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrodinger equations, Calc. Var. Partial Differential Equations 14 (2002), no. 3, 329-344. https://doi.org/10.1007/s005260100105
  18. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. No. 65, Amer. Math. Soc., Providence, RI, 1986.
  19. U. Severo, Existence of weak solutions for quasilinear elliptic equations involving the p-Laplacian, Electron. J. Differential Equations 2008 (2008), no. 56, 1-16.
  20. Elves A. B. Silva and Gilberto F. Vieira, Quasilinear asymptotically periodic Schrodinger equations with critical growth, Calc. Var. Partial Differential Equations 39 (2010), no. 1-2, 1-33. https://doi.org/10.1007/s00526-009-0299-1
  21. Y. J. Wang, J. Yang, and Y. M. Zhang, Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in $R^{N}$, Nonlinear Anal. 71 (2009), no. 12, 6157-6169. https://doi.org/10.1016/j.na.2009.06.006
  22. Y. J.Wang, Y. M. Zhang, and Y. T. Shen, Multiple solutions for quasilinear Schrodinger equations involving critical exponent, Appl. Math. Comp. 216 (2010), no. 3, 849-856 https://doi.org/10.1016/j.amc.2010.01.091
  23. M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.

Cited by

  1. Existence of solutions to a class of asymptotically linear Schrödinger equations in Rn via the Pohozaev manifold vol.428, pp.1, 2015, https://doi.org/10.1016/j.jmaa.2015.02.060
  2. Nonlinear perturbations of a periodic Schrödinger equation with supercritical growth vol.66, pp.5, 2015, https://doi.org/10.1007/s00033-015-0525-y
  3. Multiplicity of nonnegative solutions for quasilinear Schrödinger equations vol.434, pp.1, 2016, https://doi.org/10.1016/j.jmaa.2015.09.022
  4. Nonnegative solution for quasilinear Schrödinger equations that include supercritical exponents with nonlinearities that are indefinite in sign vol.421, pp.1, 2015, https://doi.org/10.1016/j.jmaa.2014.06.074