DOI QR코드

DOI QR Code

Skin Color Based Hand and Finger Detection for Gesture Recognition in CCTV Surveillance

CCTV 관제에서 동작 인식을 위한 색상 기반 손과 손가락 탐지

  • 강성관 (인하대학교 정보공학과) ;
  • 정경용 (상지대학교 컴퓨터정보공학부) ;
  • 임기욱 (선문대학교 컴퓨터정보공학부) ;
  • 이정현 (인하대학교 컴퓨터정보공학부)
  • Received : 2011.05.24
  • Accepted : 2011.06.15
  • Published : 2011.10.28

Abstract

In this paper, we proposed the skin color based hand and finger detection technology for the gesture recognition in CCTV surveillance. The aim of this paper is to present the methodology for hand detection and propose the finger detection method. The detected hand and finger can be used to implement the non-contact mouse. This technology can be used to control the home devices such as home-theater and television. Skin color is used to segment the hand region from background and contour is extracted from the segmented hand. Analysis of contour gives us the location of finger tip in the hand. After detecting the location of the fingertip, this system tracks the fingertip by using only R channel alone, and in recognition of hand motions to apply differential image, such as the removal of useless image shows a robust side. We explain about experiment which relates in fingertip tracking and finger gestures recognition, and experiment result shows the accuracy above 96%.

본 논문은 CCTV 관제에서 동작 인식을 위한 색상 기반 손과 손가락 탐지 기술을 제안하였다. 논문의 목표는 피부색을 기반으로 한 손 영역 탐지 및 손동작 인식에 대한 강인한 방법을 제안하는 것이다. 탐지된 손 영역과 손동작 인식 기술은 에어 마우스 및 스마트 TV를 조정하는데 적용될 수 있으며 홈시어터 및 감성 센서를 기반으로 하는 장치들을 조종하기 위하여도 사용될 수 있다. 입력 영상으로부터 손 영역을 구분하기 위하여 색상 기반 윤곽선 추출 방법이 사용되어지고 윤곽이 구분된 손으로부터 y좌표값을 계산하여 손가락 끝점을 탐지한다. 손가락 끝점의 위치를 탐지한 후에, R채널만을 이용하여 추적을 하며 손동작 인식에 있어서 차영상 기법을 적용하여 잡영상 제거와 같은 강인한 면을 보여준다. 제안하는 방법으로 손가락 끝점의 추적과 손동작 인식에 관련된 많은 실험을 진행하였고, 실험 결과는 기존의 방법보다 성능 면에 있어서 96% 이상의 정확도를 보여준다.

Keywords

References

  1. V. I. Pavlovic, R. Sharma, and T. S. Huang, "Visual Interpretation of Hand Gestures for Human Computer Interaction," IEEE Trans. on Pattern Recognition and Machine Intelligence, Vol.19 issue7, pp.677-695, 1997. https://doi.org/10.1109/34.598226
  2. Y. Wu and T. S. Huang, "Hand Modeling, Analysis and Recognition," IEEE Signal Processing Magazine, Vol. 18, Issue 3, pp.51-60, 2001. https://doi.org/10.1109/79.924889
  3. Y. Wu, T. S. Huang, "Vision-Based Gesture Recognition: A Review," In Proc. of the Int. Workshop on Gesture-Based Communication in HCI, pp.103-115, Springer, 1999.
  4. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, pp.168-201, 2001.
  5. J. Lee and T. Kunii, "Model-based Analysis of Hand Posture," IEEE Comput. Graph. Appl., Vol.15, No.5, pp.77-86, 1995. https://doi.org/10.1109/38.403831
  6. C. Vogler and D. Metaxas, "Towards scalability in ASL Recognition: Breaking Down Signs into Phonemes," in Gesture Workshop, pp.17-99, 1999.
  7. Y. Wu and T. S. Huang, "Capturing Articulated Human Hand Motion: A Divide-Andconquer approach," In Proc. IEEE Int. Conf. Computer Vision, Corfu, Vol.1, pp.606-611, 1999. https://doi.org/10.1109/ICCV.1999.791280
  8. C. H. The and R. T. Chin, "On Image Analysis by the Methods of Moments," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.10, No.4, pp.496-513, 1988. https://doi.org/10.1109/34.3913
  9. J. Davis, M. Shah, "Visual Gesture Recognition," In Proc. of Vision, Image, and Signal, Vol.141, No.8, pp.101-106, 1994. https://doi.org/10.1049/ip-vis:19941058
  10. B. A. Meza, M. Nagarajan, C. Ramakrishnan, L. Ding, P. Kolari, A. P. Sheth, I. B. Arpinar, A. Joshi, and T. Finin, "Semantic Analytics on Social Networks: Experiences in Addressing the Problem of Conflict of Interest Detection," In Proc. of the International Conference on World Wide Web, 2006.
  11. H. Fillbrandt, S. Akyol, and K. F. Kraiss, "Extraction of 3D Hand Shape and Posture from Image Sequences for Sign Language Recognition," IEEE Int. Workshop on Analysis and Modeling of Faces and Gestures, Vol.17, No.10, pp.181-186, 2003. https://doi.org/10.1109/AMFG.2003.1240841
  12. T. Pavlidis. Algorithms for Graphics and Image Processing, Computer Science, pp.143-160, 1982.
  13. W. Z. Gang and Z. D. Fang1, "Application of Visualization Technology in Spatial Data Mining," Computer Engineering, Vol.33, No.18, pp.67-71, 2009.
  14. N. Shimada, K. Kimura, and Y. Shirai, "Real-Time 3D Hand Posture Estimation based on 2-D Appearance Retrieval Using Monocular Camera," In Proc. of Int. WS on RATFG-RTS, pp.23-30, 2001.
  15. Argus Center for Information Architecture, http://argus-acia.com/strange_connections/.
  16. K. G. Derpanis, "A Review of Vision-Based Hand Gestures," Report, York Univ, 2004
  17. Z. Jin, Visualization for Information Retrieval, Springer, 2008.
  18. A. Jaimes and N. Sebe, "Multimodal Human Computer Interaction: A Survey," Computer Vision and Image Understanding, Vol.108, Issue1-2, pp.116-134, 2007. https://doi.org/10.1016/j.cviu.2006.10.019
  19. M. Cabral, M. Zuffo, S. Ghirotti, O. Belloc, L. Nomura, M. Nagamura, F. Andrade, R. Faria, and L Ferraz, "An Experience using X3D for Virtual Cultural Heritage," In Proc. of the Int. Conference on 3D Web Technology, pp.161-164, 2007.
  20. A. Jaimes and N. Sebe, "Multimodal Human-Computer Interaction," Computer Vision and Image Understanding, Vol.108, pp.116-134, 2007. https://doi.org/10.1016/j.cviu.2006.10.019
  21. K. Y. Jung and J. H. Lee, "User Preference Mining through Hybrid Collaborative Filtering and Content-based Filtering in Recommendation System," IEICE Tran. on Information and Systems, Vol.E87-D, No.12, pp.2781-2790, 2004.
  22. P. A. Chirita, A. Damian, W. Nejdi, and W. Siberski, "Search Strategies for Scientific Collaboration Networks," In Proc. of the ACM Workshop on Information Retrieval in Peer-to-Peer Networks, 2005.

Cited by

  1. Sequential pattern profiling based bio-detection for smart health service vol.18, pp.1, 2015, https://doi.org/10.1007/s10586-014-0370-3
  2. Gesture Recognition Method Using Sensing Blocks vol.91, pp.4, 2016, https://doi.org/10.1007/s11277-016-3356-z