Abstract
This paper presents a multivariate kriging algorithm that integrates categorical data as secondary data for spatial interpolation of sparsely sampled ground survey data. Instead of using constant mean values in each attribute of categorical data, disaggregated local mean values at target grid points are first estimated by area-to-point kriging and then are used as local mean values in simple kriging with local means. This algorithm is illustrated through a case study of spatial interpolation of a geochemical copper element with geological map data. Cross validation results indicates that the presented algorithm leads to significant respective improvement of 15% and 25% in prediction capability, compared with univariate ordinary kriging and conventional simple kriging with constant mean values. It is expected that the multivariate kriging algorithm applied in this study would be effectively applied for spatial interpolation with categorical data.
이 논문에서는 공간적으로 소수의 지점에서 획득된 현장 조사 자료의 공간 보간 과정에 범주형 자료를 결합하는 다변량 크리깅 기법을 제안하고자 한다. 범주형 자료를 결합하는 과정에서 기존 범주형 자료의 속성별로 대푯값을 할당하는 단일 지역 평균 기반의 단순 크리깅 방식 대신에, 영역-점 변환 크리깅을 이용하여 원하는 해상도로 상세화시킨 추정값을 가변적 지역 평균으로 이용하였다. 지화학 원소 구리의 공간 보간에 지질도를 이용하는 사례연구를 통해 제안 기법을 예시하였다. 교차 검증 결과, 제안 기법이 단변량 정규 크리깅과 기존 단일 지역 평균 기반의 단순 크리깅 기법에 비해 각각 15%와 25%의 예측 능력의 향상을 나타내었다. 따라서 범주형 자료를 부가 자료로 이용하는 공간 보간에 이 논문에서 제안한 기법이 효율적으로 적용될 수 있을 것으로 기대된다.