ABSTRACT
The possibility of ASR(alkali-silica reaction) for coarse aggregates had known to be low up to recently in Korea. But the distress of ASR was identified and reported by ASTM C 1260 test. The purpose of this paper was to identify the effect of environmental conditions on length expansion of mortar-bar by alkali-silica reaction with KS F 2546 and ASTM C 1260 test. The results of this study were as following; The result of KS F 2546 test for five kinds of aggregates shows that all of them are non-reactive. But that of ASTM C 1260 test shows that all of aggregates except Andesite-2 are over possible reactive because of environmental condition such as external alkali ion by IN NaOH, high temperature and humidity. The result of variety of NaOH concentration on ASTM C 1260 using Sillstone indicates that length expansion rate increases highly as NaOH concentration increases. And, comparison results of KS F 2546 for Sillstone with that of 0.001 NaOH experiment indicates that length expansion rate increases as temperature and humidity increases.

KEYWORDS
alkali-silica reaction, mortar-bar test, environmental condition, KS F 2546 test, ASTM C 1260 test

요지
국내에서는 콘크리트 포장용 콘은 골재를 대상으로 화학적인 시험방법과 모르타르 붉 시험방법을 이용한 결과 알칼리-실리카 반응 유해 가능성이 낮은 것으로 알려져 왔으나, 최근에 알칼리-실리카 반응에 의한 피손이 발생되었고, ASTM C 1260을 이용한 결과 일부 골재에서 유해한 영향이 발생된다고 보고되었다. 따라서 본 논문에서는 모르타르 붉 시험방법인 KS F 2546과 ASTM C 1260을 이용하여 길이 편차 유도기간의 환경조건이 알칼리-실리카 반응 특성에 미치는 영향을 평가하고자 하였다. KS F 2546의 경우 대상 골재 모두 반응성이 없음을 판정되었으나 ASTM C 1260에서는 일부 골재에서 잔재 반응성 이상으로 판정되었다. 이는 외부로부터의 알칼리 이온의 공급, 온도 및 습도 차이에 의하여 발생한 것으로 판단된다. 또한 ASTM C 1260에서 NaOH의 농도변화 실험을 통하여 NaOH가 증가함수록 길이팽창이 현저하게 증가한다는 것을 확인하였으며, 온도 및 습도가 증가함에 따라 길이팽창이 증가한다는 것을 확인하였다.

핵심요재
알칼리-실리카 반응성, 모르타르 붉 시험방법, 환경조건, KS F 2546 시험방법, ASTM C 1260 시험방법

1. 서론
알칼리-실리카 반응성에 관한 연구는 압축의 판단, 알칼리 함유량 분석, 평창량 실험, 점의 확인 등과 같이 골재를 대상으로 하는 방법과 시스템-골재 혼합물을 이용한 방법 그리고 반응성 점의 확인 방법으로 구분되어진다(김성수 외, 2010; Chang-Seon Shon, 2009).

2. 실험계획 및 방법

2.1. 개요

국내 콘크리트 포장용 공제의 알칼리-실리카 반응성은 완전히 보정한 공제를 사용하여 공제 완료 5주 후에 채취하였으며, 모르타르 봉 시험을 이용하는 KS F 2546(모르타르 봉 시험방법과 ASTM C 1260(축진 모르타르 봉 시험방법)를 활용하였다(KS F 2546, 2002; ASTM C 1260, 2002)).

2.2. 실험재료

2.2.1. 시멘트

시멘트는 국내 Ssa에서 생산되어 판매되는 1종 보통

<table>
<thead>
<tr>
<th>표 1. Physical Properties of cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OPC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 2. Chemical compositions of cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>OPC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 3. Lithological properties of coarse aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompositionType</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>짐 wurthite (Stilbite)</td>
</tr>
<tr>
<td>이암 (Mudstone)</td>
</tr>
<tr>
<td>규장질유리질유동암 (Felsic vitric tuff)</td>
</tr>
<tr>
<td>안산암-1 (Andesite-1)</td>
</tr>
<tr>
<td>안산암-2 (Andesite-2)</td>
</tr>
</tbody>
</table>

2 Journal of the Korean Society of Road Engineers
포틀랜드 시멘트 제품으로서 등가 알칼리 함량이 0.74% 인 고알칼리 시멘트를 사용하였다. 표 1과 표 2는 시멘트의 물리적인 특성과 화학적인 특성을 나타낸 것이다.

2.2.2. 공재

공재는 알칼리-설리카 반응에 의한 대규모 파손이 발생한 서해안 고속도로 콘크리트 포장 구간 근처에 위치한 농업 보령의 폐석산에서 5종을 샘플링하여 사용하였다. 사용된 공재의 압착하는 분석 결과는 표 3과 같다.

2.3. 시험방법

2.3.1. KS F 2546 모르타르 봉 시험방법

KS F 2546에 의한 알칼리-공재 반응성의 판정은 공시체 3개의 평균 평균값이 시험 제작 후 6개월 이후 0.1% 미만이면 "반응성이 없음"으로 판정하고 0.1% 이상이면 "반응성이 있음"으로 판정한다. 다만, 3개월에서 0.05% 이상의 평균을 보인 경우에는 그 시점에서 "반응성이 있음"으로 판정한다. 그러나 3개월에 0.05% 미만의 것은 그 시점에서 "반응성이 없음"으로 판정하지 않고, 6개월까지 시험을 지속한 후 알칼리-공재 반응성을 판정해야 한다.

물체의 규격은 KS L 5107의 3.3(들)에 규정하는 25.4×25.4×254mm를 사용한다. 시험 저장은 용기 내의 온도가 38±2℃를 유지하도록 규정하고 있다. 시멘트는 KS L 5201에 규정하는 포틀랜드 시멘트로서 등가 알칼리 함량이 0.6% 이상이고, 0.85mm체를 통과하는 것을 사용한다.

모르타르의 배합은 질량비에 서 시멘트 1, 물 0.47, 절

전 상태의 잔물체 2.25로 한다. 1회 혼합하는 시멘트, 잔물체 및 물의 양은 표 4의 값으로, 잔물체의 입도분포는 표 5과 같다.

시험 공시체의 초기 저장 및 측정은 각 물체가 채워진 후 물체는 습은실에 바로 옮겨 놓고 24±2시간 후 공시체가 건조되지 않도록 주의하면서, 공시체에 번호 및 측정 시의 상하와 방향을 기록하여 태블한다. 모든 측정값은 0.002mm까지 측정하고 기록한다. 연속적인 저장 및 측정은 공시체가 저장 용기의 수면과 떨어진 위쪽에 있도록 하여야 하며, 수면과 접촉해서는 안 된다. 38±2℃의 온도로 유지된 저장실 내에 12일간 용기를 밀봉하여 두어야 한다. 재료 14일이 되면, 저장실에서 저장 용기와 내용물을 깨끗한 후 그 깊이를 측정한다. 용기를 열고 재료 14일 계측을 하기 전에 최소 16시간 동안

2.3.2. ASTM C 1260 촉진 모르타르 봉 시험방법

ASTM C 1260 시험방법은 시편 제작 후 16일 후 길이 변화를 측정하여 0.1~0.2% 이면 알칼리-설리카 반응의 짙게있어 있는 것으로 판정하고, 0.2% 이상이면 알칼리-설리카 반응성이 있는 것으로 판정하고 있다.

시험에 사용되는 모르타르 봉의 배합은 시멘트 440g, 혼합물체 990g 및 물 206.8g이다. 배합에 사용된 물-시멘트 비는 47%이며 잔물체의 입도분포는 표 6과 같다. 모르타르 봉은 25.4×25.4×254mm 규격으 로 3개/조로 제작하였다. 모르타르 봉의 암 끝단은 길이 변화 측정을 위한 스티커를 설치한다.

표 4. Mortar mixture design for KS F 2546 test

<table>
<thead>
<tr>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>141±1ml</td>
</tr>
<tr>
<td>Cement</td>
<td>300±1g</td>
</tr>
<tr>
<td>Fine aggregate (Absolute dried)</td>
<td>675±1g</td>
</tr>
</tbody>
</table>

표 5. Grading requirement for KS F 2546 test

<table>
<thead>
<tr>
<th>Sieve size (mm)</th>
<th>Passing</th>
<th>Retained on</th>
<th>Mass(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>1.2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.6</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

표 6. Grading requirement for ASTM C 1260 test

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Mass(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75 (No.4)</td>
<td>2.36 (No.8)</td>
</tr>
<tr>
<td>2.36 (No.8)</td>
<td>1.18 (No.16)</td>
</tr>
<tr>
<td>1.18 (No.16)</td>
<td>0.61 (No.30)</td>
</tr>
<tr>
<td>0.61 (No.30)</td>
<td>0.31 (No.50)</td>
</tr>
<tr>
<td>0.31 (No.50)</td>
<td>0.15 (No.100)</td>
</tr>
</tbody>
</table>

모르타르 봉 제작은 물체에 모르타르를 타설한 후 23℃ 가 유지되는 황온-황습기에서 물체 상태로 24시간 동안
양생한다. 1일 양생된 모르타르는 물에서 시편을 분리
하여 모르타르의 길이를 0.002mm까지 측정한다. 모르타
르 봉의 양 끝단에 설치된 스트드까지의 길이를 그림 1과
같이 다이얼게이지가 설치된 길이변화 측정기로 삽입 양
생 전 길이를 측정한다.

초기 측정이 완료된 시편은 플러그프립밀과 밀폐 용
기에 시편이 완전히 잠기도록 중류수를 채워 밀폐 시
간 후 80℃가 유지되는 항온기에서 24시간 수중 양
생을 하였다. 24시간 경과 후 수중 양생된 시편은 영
점 길이 변화 측정을 위하여 밀폐 용기에에서 개난 후
물기를 제거하고 초기 길이 변화를 15초 이내에 측정
완료한다.

초기 길이 변화를 측정한 모르타르 봉 시편은 1N
NaOH 수용액을 담가 있는 밀폐용기에 수신시켜 80℃
가 유지되는 항온수조에서 길이 변화를 유도한다. 영점
길이 변화 측정 후 모르타르 봉 시편의 길이 변화를 7,
14 및 28일에 측정하였으며, 모르타르 봉의 변화상태
및 굴절 발생 여부를 요약으로 판정한다.

표 7. Expansion result for types of aggregates by
Ks F 2546 test

<table>
<thead>
<tr>
<th>Types of Agg.</th>
<th>Percent Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>14-4</td>
</tr>
<tr>
<td>Siltstone</td>
<td>0.000</td>
</tr>
<tr>
<td>Mudstone</td>
<td>0.000</td>
</tr>
<tr>
<td>Felsic vitric tuff</td>
<td>0.000</td>
</tr>
<tr>
<td>Andesite-1</td>
<td>0.000</td>
</tr>
<tr>
<td>Andesite-2</td>
<td>0.000</td>
</tr>
</tbody>
</table>

3.2. ASTM C 1260 시험결과 및 고찰

국내 콘크리트용 굳은 곳에 대한 ASTM C
1260 측정 모르타르 봉 시험방법을 이용한 알칼리-실
리카 반응성 평가 결과는 표 8과 같다.

표 8. Expansion result for types of aggregates by
ASTM C 1260 test

<table>
<thead>
<tr>
<th>Types of Agg.</th>
<th>Percent Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-day</td>
<td>7-day</td>
</tr>
<tr>
<td>Siltstone</td>
<td>0.000</td>
</tr>
<tr>
<td>Mudstone</td>
<td>0.000</td>
</tr>
<tr>
<td>Felsic vitric tuff</td>
<td>0.000</td>
</tr>
<tr>
<td>Andesite-1</td>
<td>0.000</td>
</tr>
<tr>
<td>Andesite-2</td>
<td>0.000</td>
</tr>
</tbody>
</table>

제제 14일(시편 제작 후 16일)의 알칼리-실리카 반응
에 의한 길이 평창 측정 결과 실트암과 이암의 경우 각
각 0.425%와 0.227%로 측정되어 “반응성 없음”으로
판정되었으며, 규장강유리질유화암과 안산암-1의 경우
에는 각각 0.147%와 0.149%로 측정되어 “조하 반응
성”으로 판정되었으나, 안산암-2의 경우에는 0.045%
로 측정되어 “반응성 없음”으로 판정되었다. 또한, 추가
적으로 제제 28일의 길이 평창 측정 결과 규장강유리질
유화암과 안산암-1의 경우에는 제제 14일 길이 평창
측정 결과 “조하 반응성”으로 판정되었던 굴제가 각각
0.292%와 0.311%로 측정되었으며, 최대 실트암의 경
우 0.568%, 최소 안산암-2의 경우 0.084%로 측정되
었다.

모든 굴제에서 동일하게 제제가 경과함에 따라 알칼
리-실리카 반응에 의한 길이 평창이 증가하는 것으로
나타나 잠재적으로 알칼리-실리가 반응에 대한 유해요
소를 포함하고 있는 것으로 판단되어서 제제 28일
가지 또는 그 이후까지 측정하여 알칼리-실리가 반응에
의한 길이 평창 특성을 고려해야 할 것으로 사료된다.
3.3. 시험방법에 따른 비교・분석

KS F 2546 모르타르 봉 시험방법과 ASTM C 1260 축진 모르타르 봉 시험방법에 의한 알칼리-실리카 반응성 평가 결과를 표 9에 나타내었다. 안산암-2를 제외한 다른 과체에서는 시험방법에 따라 알칼리-실리카 반응성 평가 결과가 서로 다르게 나타났다.

표 9. Comparison of reactivity for types of aggregates between KS F 2546 test and ASTM C 1260 test

<table>
<thead>
<tr>
<th>Types of Agg.</th>
<th>Evaluation of Alkali-silica reactivity KS F 2546 test</th>
<th>ASTM C 1260 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sillstone</td>
<td>non-reactive</td>
<td>reactive</td>
</tr>
<tr>
<td>Mudstone</td>
<td>non-reactive</td>
<td>reactive</td>
</tr>
<tr>
<td>Felsic vitric tuff</td>
<td>non-reactive</td>
<td>possible reactive</td>
</tr>
<tr>
<td>Andesite-1</td>
<td>non-reactive</td>
<td>possible reactive</td>
</tr>
<tr>
<td>Andesite-2</td>
<td>non-reactive</td>
<td>non-reactive</td>
</tr>
</tbody>
</table>

KS F 2546 모르타르 봉 시험방법과 ASTM C 1260 축진 모르타르 봉 시험방법에서 동일한 과체에 대해 동일한 알칼리-실리카 반응성 평가 결과를 나타내었으며, 안산암-2를 제외한 다른 과체에서는 시험방법에 따라 알칼리-실리카 반응성 평가 결과가 서로 다르게 나타났다.

3.3.1. 외부로부터의 알칼리 이온 공급에 따른 영향

ASTM C 1260 축진 모르타르 봉 시험결과에서 최대 백량을 보인 실트암을 대상으로 NaOH의 농도 변화에 따른 성능을 실험적으로 시험하였으며, 길이팽창 특성을 분석한 결과는 표 10과 같다.

표 10. Difference of environmental conditions between KS F 2546 test and ASTM C 1260 test

<table>
<thead>
<tr>
<th>Content</th>
<th>Name</th>
<th>KS F 2546 test</th>
<th>ASTM C 1260 test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of test</td>
<td>Mortar-Bar</td>
<td>Mortar-Bar</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td>Expansion</td>
<td>Expansion</td>
<td></td>
</tr>
<tr>
<td>Type of Particle</td>
<td>Fine or crushed coarse</td>
<td>Fine or crushed coarse</td>
<td></td>
</tr>
<tr>
<td>Size of specimens(mm)</td>
<td>25.4×25.4×254</td>
<td>25.4×25.4×285</td>
<td></td>
</tr>
<tr>
<td>Temperature(℃)</td>
<td>38±2</td>
<td>80±2</td>
<td></td>
</tr>
<tr>
<td>Alkali content(%)</td>
<td>L: above 0.6% Na₂O of cement</td>
<td>U: immersed in 1N NaOH</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>Specimens is over water between 25mm in container</td>
<td>Immersed in NaOH solution</td>
<td></td>
</tr>
<tr>
<td>Criteria</td>
<td>Reactive if expansion: 0.1% after 6months (Reactive if expansion: 0.05% after 3months)</td>
<td>Varying in the range of 0.1~0.2%</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>6months</td>
<td>14days</td>
<td></td>
</tr>
</tbody>
</table>

NaOH의 농도가 1.00N에서 0.00N로 낮아질수록 재량 14 및 28일에 측정된 길이팽창이 현저하게 감소하는 것을 알 수 있으며, 0.25N NaOH의 경우에는 재량 14일에 0.046% 재량 28일에는 0.049%로 측정되어 ‘반응성 없음’으로 나타났다.

또한, 0.00N NaOH와 1.00N NaOH의 길이팽창율을 비교하여 보면 반응성이 없는 과체에서도 외부로부터의 알칼리 이온 공급이 이루어지면 길이팽창이 유발되어 ‘반응성 있음’으로 판정될 수 있다는 우려를 내포하고 있다.

3.3.2. 온도 및 습도에 의한 영향

표 7의 실험 길이팽창 결과와 표 11의 0.00N NaOH 길이팽창 결과를 살펴보면 KS F 2546의 경우에 38℃ 시험은 저장온기 내에서 수면과 25mm과를 두고 거친 상태이고 ASTM C 1260의 NaOH 농도변화 실험의 경우에는 80℃, 시험은 수면한 상태이므로 온도 및 습도의 차이에 의하여 ASTM C 1260의 NaOH 농도변화 실험에서 재량 28일의 시험이 약 2.5배 정도 길이팽창이 증가한 것으로 나타났다.
4. 결론

본 논문은 국내 콘크리트 포장용 굽은 곱체 5종을 대상으로 모르타르 봉 시험방법의 환경조건이 알칼리-실리카 반응성 평가 결과완성 빅스 모두 "반응성 없음"으로 판정되었다.

1. KS F 2546 모르타르 봉 시험방법을 이용한 알칼리-실리카 반응성 평가 결과 대상 봉체 모두 "반응성 없음"으로 판정되었다.

2. ASTM C 1260 측진 모르타르 봉 시험방법을 이용한 알칼리-실리카 반응성 평가 결과 실험과 이익은 "반응성 없음"으로 판정되었고, 규정값이라는 일반화된 결과로, 안전성을 1단 "반응성 없음"으로, 안전성을 2단 "반응성 없음"으로 판정되었다.

3. KS F 2546 모르타르 봉 시험방법과 ASTM C 1260 측진 모르타르 봉 시험방법의 결과는 서로 상관성이 없어지며 길이 평창을 유도하는 환경조건의 차이점에 의한 영향으로 판단된다.

4. ASTM C 1260 측진 모르타르 봉 시험방법에서 NaOH의 농도변화에 따른 실험결과 "반응성 없음"의 경우가 NaOH의 농도가 증가할수록 즉, 외부로부터의 알칼리 공급에 의하여 "반응성 없음"으로 평가 되어질 가능성을 내포하고 있다.

5. 동일한 콘크리트를 이용한 모르타르 봉에서 온도 및 습도 증가함수록 길이팽창이 증가한다는 것을 확인하였다.

참고 문헌

강원대학교(2008) "최종보고서: 알칼리-클레이 반응 억제용 혼화제 물리학적 특성 및 반응성 클레이 DB 구축 연구", 한국도로공사 도로교통연구원
김성수, 류재석, 이승태, 정호섭 공제(2010) "토목재료학", 구미서관, pp.91-84
농어촌진흥공사 농어촌연구소(1994) "콘크리트용 대체클레이 개발에 관한 연구", 94-05-19
임상산업(1997) "콘크리트용 부수재료의 실용화 연구", 대한주택공사 주택연구소
윤경수, 김성환, 홍송호, 한승현(2008) "시험방법에 따른 국내 클레이의 알칼리-실리카 반응성 평가", 한국콘크리트학회 논문집, 제20권 6호, pp.689-696
윤경수, 홍송호, 한국콘크리트학회(2008) "ASTM C 1260 실험에 의한 국내 클레이의 알칼리-실리카 반응 평가 특성", 한국콘크리트학회 논문집, 제20권 4호, pp.413-437
홍승호(2006) "국내 콘크리트의 알칼리-실리카 반응에 대한 조사 및 억제 방안", 공학복식학회논문, 강원대학교
KS F 2546(2002) "클레이의 알칼리 잡반 반응 시험 방법(모르타르 봉 방법)". 자식경제부 기술표준원

접 수 일: 2010. 11. 11
サ 사 일: 2010. 11. 16
심사전행일: 2011. 6. 21

6 Journal of the Korean Society of Road Engineers