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A Looping Problem in the Tree-Based Mobility
Management for Mobile IP Supported Ad Hoc Networks

Trung-Dinh Han

Abstract: A loop can take place in the process of managing tree to-
pology for mobility management of mobile nodes in infrastructure-
based mobile ad hoc networks. The formation of a loop degrades
an effective bandwidth of the wireless network by passing an iden-
tical message repeatedly within the same loop. Therefore, the loop
should be resolved to revert the system back to the normal state.
In this paper, we propose a simple and novel mechanism that de-
tects and resolves a loop quickly by tracking the depth of trees.
The mobility management approach that employs the loop resolu-
tion method is evaluated comparatively with the original tree-based
one and the hybrid one. It is shown that the proposed approach
far outperforms the other approaches, and it is robust against the
rapid changes in network topology.

Index Terms: Ad hoc, looping problem, mobile IP, mobility man-
agement, tree-based.

I. INTRODUCTION

Mobility management of mobile nodes (MNs) is required for
infrastructure-based mobile ad hoc networks so that they can
communicate with other hosts in the Internet or MNs in other
mobile ad hoc networks. Since MNs have to register with In-
ternet gateway (IG) and update their mobility periodically via
wireless multi-hop, mobility management usually incurs a high
network overhead. Various mechanisms to pursue efficiency of
mobility management have been proposed during the last decade
[1].

The traditional approaches to mobility management are gen-
erally categorized into three types: Proactive schemes [2]-[5],
reactive schemes [6], {7], and hybrid schemes [8]-[10]. In the
proactive schemes, IG periodically floods the network with ad-
vertisement messages, establishing registration path. Then, an
MN performs registration with the IG along the registration path
at regular intervals. Since this method keeps all MNs registered
regardless of whether they participate in active communication,
it is advantageous that the remote hosts can make a connection
request via IG at any time. However, an MN may fail to register
since registration path can be broken before the beginning of the
next interval, at which the MN initiates registration. In the re-
active schemes, only when an MN wants to communicate with
remote hosts via the Internet, it floods the network with solici-
tation messages to search for an IG. When the MN receives an
acknowledgement message that sets up registration path, it per-

Manuscript received February 05, 2010; approved for publication by Christos
Douligeris, Division II Editor, March 21, 2011.

H. Oh is a corresponding author.

The authors are with the Department of Computer Engineering and Informa-
tion Technology, University of Ulsan, Korea, email: trungdinhvn@yahoo.com,
hoonoh@ulsan.ac kr.

and Hoon Oh

forms registration along the path. The flooding tends to increase
network overhead significantly. Thus, the hybrid scheme was
proposed to reduce the range of the flooding [9]. An IG floods
the network with advertisement messages, but only within a lim-
ited range of hops, say & hops, whereas MNs residing outside &
hops flood the network with solicitation messages to locate a
registered MN that has a path to an IG so that it can register
with the IG via the registered node. This approach reduces the
flooding range, but only to a certain degree.

Recently, the tree-based mobility management approaches
[11]-[15] have been appealing due to their low network over-
head and high scalability since they do not employ flooding. An
MN registers with an IG along tree paths to the IG periodically.
Despite that the tree-based approach has been studied in various
ways for its successful employment, the looping problem has
not been addressed yet that takes place in the process of main-
taining tree topology. If a loop is formed in tree topology, net-
work overhead increases rapidly, degrading an effective network
bandwidth quickly. Therefore, an efficient mechanism to solve
the looping problem is required. However, solving the looping
problem is not easy because of the synchronization delay’ of
link information between MNs in a tree.

In this paper, we propose a method to detect and resolve the
looping problem by tracking and limiting tree depth. The pro-
posed method not only reduces the possibility of loop formation

-greatly, but also resolves the loop quickly.

The tree-based approach that employs the proposed loop res-
olution scheme is evaluated by resorting to simulation, compar-
ing with the original tree-based approach [11] and the hybrid
approach [9]. According to our simulation results, the proposed
loop resolution mechanism improves node registration, latency,
and jitter as well as reduces network overhead significantly.

Section II describes the network model, the associated def-
initions, and a looping problem. The proposed method for
detecting and resolving the looping problem is described in
Section III. We evaluate performance by resorting to a simula-
tion in Section IV and make concluding remarks in Section V.

II. BACKGROUND
A. Network Model and Definitions

In this paper, we consider an infrastructure-based mobile ad
hoc network that consists of IGs and MNs. The considered net-
work is maintained as a set of the trees, each originating in an
'IG and consisting of one IG and multiple MNs. We assume that
nodes can overhear packets that are transferred between other

1Synchronization delay indicates that if a link between any two nodes comes
to being or is broken, the other nodes know the change only after some time
interval, but not immediately.
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® Orphan-node 1 receives or
@ Hello overhears Hello from an IG
/ @ J-REQ @ Orphan-node 1 sends J-REQ to the IG
/ ® Orphan-node 1 gets ACK from the IG
and completes the join

@

1G

® Ack

g (¢}
**® Orphan-node 2 overhears Hello that
node 1 unicasts to its parent, IG
® Orphan-node 2 unicasts J-REQ to node 1
@ JREQ 'f ® Orphan-node 2 gets ACK from node 1
@@ ACK  and completes the join

@ Hello ’

®)

Fig. 1. The join-handshaking process: (a) An orphan-node that joins IG
and (b} an orphan-node that joins a tree-node.

nodes [16]. A node is said to be a tree-node if it belongs to any

tree and to be an orphan-node if it does not have a parent (even

though it has children). A link that represents a parent-child re-
lationship in a tree is specially called a tree-link.
We define some messages for ease of explanation.

L]
odically. A tree-node always unicasts this Hello message to
its parent periodically. The HopTolG indicates the distance
in hops from a node that initiates the hello message, to an
IG. Thus, the IG has its HopTolG = 0.

J-REQ = (): MN sends this join request message to its neigh-
bor to join.

CR-REQ = (): An orphan-node responds with this children
release request message to its child that sends Hello.

REG = (NodelD): A node sends this registration message to
register with IG periodically. NodeID indicates IP address of
the node. All intermediate nodes maintain tree information
upon receiving this message.

The tree information structure (TIS) of node i is expressed as

follows:

TIS; = (i.HopTolG, i.P,:.D)

where .HopTolG indicates node i’s HopTolG, i.P does ¢’s par-
ent, and 7.D does a set of ¢’s descendants in the tree whose root
becomes node 1.

B. Tree-Based Approach

In this subsection, we briefly describe the tree-based approach
before identifying the problem to be resolved in this paper. An
IG broadcasts Hello message periodically. An orphan-node that
receives the Hello tries to join the IG by sending J-REQ to
the IG. If the IG receives J-REQ, it takes the sender as its
child. Upon receiving the acknowledgement (ACK) message
in the IEEE 802.11 media access control (MAC) layer, the
orphan-node gets the IG as its parent and becomes a tree-node.
Every tree-node sends Hello periodically to its parent to assure
link availability. An orphan-node that overhears Hello from any
tree-node tries to join the sender by sending J-REQ. The tree-
node that receives J-REQ takes the sender as its child. Upon re-

Hello = (HopTolG): IG broadcasts this Hello message peri-
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Assume that node 1
knows node 3

@

In Fig. 2(a),

@ Node 1 detects the broken link (1, x) when it tries to
send Hello to its parent x. In fact, node 1 does not trans-
mit the Hello since it fails to receive clear to send (CTS)
in the IEEE 802.11 MAC layer.

@@ Node 1 joins its neighbor 3 through the join pro-
cess assuming that node 1 already knows the existence
of node 3.

In Fig. 2(b),

@ Node 3 moves away from node y and detects the bro-
ken link (3, y) upon trying to send Hello.

®® When node 2 sends Hello to its parent 1, node 3 over-
hears the Hello and joins node 2, being its descendant,
assuming that node 2 did not issue REG yet. This ends
up with the formation of a loop.

Fig. 2. An example of loop formation scenario.

ceiving ACK for the Hello, the orphan-node gets the tree-node
as its parent to become a tree-node. A tree-node becomes an
orphan-node (that may or may not have children) immediately
when it fails to send Hello to its parent. Every tree-node registers
with IG along tree paths periodically. The periodic registration
makes sense in that any MN in the network can be requested for
connection by other remote hosts or MN’s via IG.

Fig. 1(a) shows the join hand-shaking procedure that
orphan-node 1 joins IG and Fig. 1(b) shows the hand-shaking
procedure that orphan-node 2 joins tree-node 1.

In order to reduce overhead, a node that becomes an orphan
does not send a CR-REQ immediately to ask its children to logi-
cally leave? its parent. Instead, the orphan-node maintains all its
descendants as if it has its own parent. If it receives Hello from
any child, it responds with CR-REQ to ask that child only to log-
ically leave the current parent. This is because the orphan-node
may find a new parent soon.

C. Problem Identification

Originating in an IG that is an initial tree-node, orphan-nodes
join tree-nodes such that their path length in hops to the IG
becomes a minimum. Meanwhile, a tree-node may become an
orphan-node when it moves away from and loses connection to
its parent. The orphan-node that has just lost its parent will try
to join a tree-node again. In this process, the orphan-node may
join one of its descendants erroneously, creating a loop, if it does
not have information about the descendant. A loop causes the

2The logically leave means that a node does not maintain a tree-link for its
parent anymore, but a link as a neighbor.
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involved nodes to deliver an identical message repeatedly until it
is broken, increasing network overhead substantially. This type
of abnormal situation takes place because a node sends its REG
at regular intervals, incurring an update delay when it either ob-
tains a new child or loses its child. The update delay is referred
to as a convergence or synchronization delay.

Fig. 2 shows a part of the network that shows seven nodes
1,2,3,1,y, z, and IG, wherein the scenario of loop formation is
illustrated in detail. Assuming that node 3 joins node 2 success-
fully in Fig. 2(b), if node z sends REG to its parent 2, the REG
will circle the loop.

One simple solution (thereafter, referred to as simple solu-
tion) to detect the loop is that a node always sends the REG
message to its new ancestors immediately after it joins any node
successfully. If the originator receives the REG message back, it
can be aware of the formation of a loop quickly. Then, the node
can break the loop by logically leaving its parent. However, the
simple solution incurs two serious problems as follows:

o The way that a node issues the REG message immediately
whenever it joins a tree-node will incur a significant control
overhead because of the continuous relay of the REG mes-
sage up to an IG and the high generation frequency of the
REG in a high mobility network.

o The transmission delay of the REG message may cause the
originator to break a false loop unnecessarily as follows. Re-
ferring to Fig. 2, suppose that node 1 has changed its parent
to some other node in order to have the shorter HopTolG af-
ter it issued the REG message to its current parent, node 3.
This change of parent breaks the loop naturally. If node 1
receives the REG message back later on, it will try to break
the false loop that is not a loop anymore by logically leav-
ing its new parent. In consequence, node 1 will be left as an
orphan-node again.

I1I. LOOP DETECTION AND RESOLUTION

To detect and resolve the looping problem, the newly joined
node is required to send Hello immediately to its parent if the
following two conditions are satisfied: (1) It has its new Hop-
TolG different from its old one; and (2) it has at least one child.

The first condition indicates that all the children have to
change their HopTolG and the second condition indicates that
if it does not have any child, it cannot be involved in a loop. The
children of the newly joined node can update their HopTolG
quickly by overhearing the Hello.

Based on the above rule, a node determines that it is in-
volved in a loop if its parent’s HopTolG is equal to a specified
value, DEPTH_LIMIT. Once a node detects a loop, it breaks the
loop by becoming an orphan-node. The algorithm is detailed in
Fig. 4.

We prove that the loop detection and resolution (LDR) algo-
rithm always detects and resolves a loop. Let us assume that an
orphan-node does not join a tree-node whose HopTolG is equal
to DEPTH_LIMIT. For convenience, let H; be the HopTolG of
node 7. We consider two cases separately.

e Case 1: Suppose that a node x has only one child. A node
never joins its child since it does not overhear, but receives
Hello from its child. So, it cannot create a loop.

Y™
HopTolG of v,

0
The HopTolG after
overhearing Hello

Qs

(+2) Gt (j+n-;?2) (tntl)
R R CRA YO
PO G
i+ €Y i @ > Unicast
% B *¥ Overhearing
(+n-1) (+n-1)
(a) (b)

* After v, joinsv,
@ v, sends Hello to its new parent v, and v, overhearsiit.
@ v, sends Hello to its parent v, and v; overhears it.
... (continues)

Fig. 3. lllustration of LDR algorithm: (a) Before a loop is created and (b}
after a loop (v1,v2, -, Vi, -, Un—1, Un, V1) iS Created.

//H, : is the HopTolG of node z.
//z.P: is the parent of node «.
/z.C: is a set of children of node .
At a node z that detects disconnection to its parent:
1. IF node x overhears Hello from a tree-node y THEN
2. IF H, == DEPTH_LIMIT THEN return; ENDIF;
// z is not an ancestor of node y or
// x may not have received REG initiated by y.

IF x’s descendant list does not include y THEN

T joins y;

{F (H, # Hy + 1) THEN

Hy=H,+1,
x immediately sends Hello to y if z.C' # 0;

ENDIF;
9. ENDIF;
10. ENDIF;
At a node z that everhears Hello that its parent sends:
11.1IF H, p == DEPTH_LIMIT THEN
12.  Node x breaks the loop by becoming an

orphan-node;

N oLk W

13. ELSE
14. IF(H, # H,.p +1) THEN
15. H;l; = H‘JE'P + 1’

16. « immediately sends Hello to z. P if z.C # 0;
17.  ENDIF;
18. ENDIF;

Fig. 4. LDR algorithm.

e Case 2: Referring to Fig. 3, suppose that a node v; has a
descendant v,, that is n — 1 hops away from v; and v; has
not received REG from node v, yet that has joined v,
recently. Since node vy does not know vy, it can join node
vp,. Now, the group of nodes, vy, vz, -+, Up—1, U, forms a
loop. Since v, joined v, that is v;’s descendant, H,,, #
H,, -+ 1. Thus, according to line 6 and line 7 of the algo-
rithm, H,, = H,, + 1 and v; would always send Hello. In
line 15, node v> that is a child of v; overhears the Hello and
changes its HopTolG: H,,, = H,, +1 = H,, + 2. Now,
node v, will send Hello to its parent v; and now vz will over-
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Table 1. Comparison of the simple solution and the LDR.
| Simple solution | LDR
- The total num-
ber of the generated
Hellos is limited by
- A high network | DEPTH_LIMIT — (5 +
overhead due to | n), j > 0, n > 3 where
the  continuous | j is HopTolG of the par-
relay of the REG | ent of the Hello initiator,
message up to | and n is the number of
Network | 2y IG and the | nodes involved in a loop.
overhead | hioh generation | - The limited frequency
frequency of | of Hello initiations since
the REG mes- | a newly joined node
sages (A node | initiates the Hello if the
has to issue an | given conditions are
REG whenever | satisfied.
it joins another | - Any node stops sending
tree-node). the Hello if its HopTolG
is over DEPTH_LIMIT.
- Only the node .
that issued the | ~ Any node in a (pos-
Loop REG detects and | SiPly) loop can .detejct
resolution | breaks a loop. the loop by checking its
speed - The bigger the HOPTOIG_'
loop size, the |~ The b1gger the loop
slower the loop | SiZ& tl.le quicker the loop
detection. detection.
- A node that overhears
- May break a Hello, but is not involved
Side false loop be- in a loop can leave its
effect cause ‘?f t.he REG parent logically; how-
transmission ever, it contributes to
delay. limiting tree depth.

hear it: H,,, = H,, + 1 = H,,_, + 3. In this way, for node
vy, Hy, = H,, + 4. Thus, HopTolG increases continuously.

During this process, a node that finds out the HopToIG of its
parent which is equal to DEPTH_LIMIT breaks the loop by be-
coming an orphan-node itself in line 12 of the algorithm. In line
16, the existence of a loop implies that the node has at least one
child and thus surely will issue Hello. Thus, the nodes in the
loop continuously increase their HopToIG until any node breaks
the loop after it satisfies the condition of the line 11.

With the LDR, the (DEPTH_LIMIT — (j + n)) number of
Hello messages will be generated at most before breaking the
loop where j > 0 as the distance from the parent of the Hello
initiator to an IG and n > 3 as the number of nodes involved in a
loop. Therefore, the bigger the (j+n) is, the smaller the number
of Hello messages generated to resolve a loop gets. The LDR
can quickly detect and resolve a loop; however it can sometimes
have some node break a link to its parent although it is not in-
volved in a loop. Table 1 summarizes the key differences be-
tween the simple solution and the LDR.
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IV. PERFORMANCE EVALUATIONS

We resort to simulation (use QualNet 3.9) to evaluate the
tree-based approach that employs the LDR, named tree-based
method (TB)-LDR. This method is compared with the hybrid
method (Hybrid), and the original TB. This section consists
of three parts: Implementation of Hybrid and TB, evaluation
model, and the performance evaluation of the three approaches.

A. Implementation of Hybrid and TB

In implementation, we assume that any wired host or wireless
MNss in other ad hoc networks can request connection to an MN
in the considered network. This implies that every MN has to do
its best to register with IG even though it does not want to have
any initiative to make connection to any remote node through an
IG. ‘

Every registered MN and its associated IG manage their own
registration-timer which is time-synchronized to prevent a stale
registration of node. Thus, IG removes a registered node from
its node registration list if the corresponding registration-timer
expires. Also, every MN has to register with its IG periodically:
whenever its regisfration-timer expires. The registration-timer is’
set to 5 seconds for all the protocols. Other parameters are also.
used to characterize the operation of each protocol. The values
used for the key parameters were carefully chosen through mul-
tiple runs of simulation to produce the best outcome.

A.1 Hybrid Method

An IG floods advertisement message (ADV) periodically up
to k hops by associating the message with advertisement-timer.
During this process, a reverse path from any receiving node to.
the 1G is established. Upon receiving this message, an unreg-.
istered node sends REG along the reverse path to register with
the IG. A forward path from the IG to the MN is established:
through this registration process. Each established path is asso-
ciated with path-timer whose expiration invalidates the path.

An MN that is distanced over k£ hops and thus does not receive
ADV floods solicitation (SOL) message to search for any regis-
tered node or an IG by using the expanding ring search method
[9]. In this process, another forward path from the receiving reg-
istered node to the node that has initiated SOL is established.
Then, upon receiving SOL, the registered node sends a response
message to the initiator, establishing another reverse path from
the unregistered initiator to the registered node. Finally, the node
thatissued SOL registers with IG along the combined one of two
reverse paths. We use 2 seconds for the advertisement-timer and
3 seconds for the path-timer, and % is set to 2. ‘

A.2 TB Method

An IG broadcasts Hello periodically by using hello-timer. An
orphan-node either joins the IG if it receives Hello or joins a
tree-node if it overhears Hello by sending J-REQ to the tree:.
node. Every tree-node sends Hello to its parent periodically by
using hello-timer and the other neighbors can update their neigh-
bor list by overhearing the Hello. If a node loses its parent, it
becomes an orphan-node and then has to initiate the join hand-
shaking procedure. All tree-nodes register with IG along tree
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Fig. 5. Deployment scenarios (The node with a small circle indicates
IG and the big circle indicates the 1G transmission range that is the
same as the MN one): (a) S1 with 50 MNs, (b) 82 with 50 MNs, and
(c) 83 with 50 MNs.

Table 2. Simulation parameters and values.

| Parameters Values | Remarks |
Mobility pattern Random waypoint
Pause time 30
Number of nodes Varying density
(1 fixed IG)
Dimension 1000 x 1000 All pr s
Transmission range 250 m protocols
Wireless bandwidth 2 Mbps
Registration interval 5 seconds
Simulation time 600 seconds
Advertisement interval | 2 seconds
Advertisement zone 2 hops
(IG) Hybrid only
Increment in the 2 hops
expanding ring search
(MN)

Table 3. Control message overhead for tree maintenance and mobility
management (50 nodes).

Message TB TB-LDR
S1 | S2 ] S3 S1 1 S2 | 53
Hello 10396 | 10350 | 10241 | 10465 | 10435 | 10181
J-REQ 1699 | 2765 4423 1594 | 2208 | 3625
CR-REQ 48 160 535 35 316 769
REG(I) | 6030 | 5993 5920 6029 | 5908 | 5806
REG(R) | 18256 | 68163 | 186384 | 5433 | 11351 | 15709
Avg. KB | 79 23.2 59.4 39 5.7 7.1

(I): Initiated message
(R): Relayed message

paths periodically. In this implementation, we use 3 seconds for
the hello-timer.

B. Evaluation Model

In simulation, we use three basic scenarios S1, $2, and $3 that
have IG locations in center, top center, and corner, respectively
as shown in Fig. 5. The number of nodes (nNodes) varies from
50 to 100, or the maximum speed (mSpeed) changes from 0 m/s
to 50 m/s. The other simulation parameters and values are given
in Table 2.

Considering the deployment scenarios in Fig. 5, it is easily
expected that the average value of HopTolG will be increasing

in order of S1, 82, and S3. Thus, it can be easily conjectured
that S1 will produce the smallest control overhead in manag-
ing node mobility. Table 3 indicates the overheads of pairs of
<deployment scenario, mobility management method>.

Basically, control overhead is increasing in order of S1, S2,
and S3 as proportional to the expected average size of trees.
Looking at the number of REG(R)s, overheads in the table tell
that the TB-LDR resolves the loops quickly. One more thing
to note is that the number of CR-REQs is large in both S2
and $3 that relatively create more loops. When the TB is used,
the orphan-node joins any tree-node and remains a tree-node
even within a created loop; however the TB-LDR turns the new
tree-node into an orphan-node back after quickly resolving the
loop if formed. Thus, the TB-LDR generates more CR-REQs.
Note that for the TB-LDR with scenario S3, the less number of
Hellos implies the more number of orphan-nodes that in turn,
result in the more number of CR-REQs.

For evaluation, we use four metrics: Control overhead, regis-
tration ratio, registration latency, and registration jitter. Control
overhead is obtained by summing up overheads of the control
messages related to tree maintenance and node registration and
dividing the sum by the number of nodes. This metric allows
us to evaluate the effectiveness of LDR algorithm. Registration
ratio is the ratio of the registration-success to the registration-
attempt. Whenever an MN sends REG message, it increases its
registration-attempt by one; whenever IG receives REG from
a node, IG increments registration-success of the node by one.
Then, registration ratio is given as

nNodes
> registration — success of node ¢
i=1

nNodes
>~ registration — attempt of node ¢
=1

This metric allows us to evaluate the stability of the paths
from the MNs to IG. Also, based on the measured value, we
can deduce which protocol can better deliver packets from MNs
to 1G or vice versus. Registration latency is the difference be-
tween the time that an MN issues REG and the time that 1G
receives the same message. This metric also allows us to eval-
uate the relationship between network traffic and transmission
delay. Registration jitter is the average difference of the laten-
cies of two consecutive packets for all the registration packets
that are issued by MNs. This metric allows us to evaluate path
stability. All of the metrics are affected by the looping problem
in the tree-based approach or the flooding mechanism in the Hy-
brid approach.

C. Simulation Results and Discussion

According to Fig. 6, the protocol with the LDR shows a low
overhead overall. Furthermore, it shows a slightly increasing
curve as node speed increases. However, the protocol with the
simple solution shows a sharply increasing curve. This is be-
cause a node with the simple solution issues REG immediately
after it joins a tree-node. Thus, the higher node speed will result
in the more REGs. Accordingly the gap becomes larger as node
speed increases. . ; :

Now, we compare three mobility management approaches,
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TB-LDR, TB, and Hybrid according to the variations of Sce-
nario, nNodes, and mSpeed. According to Figs. 7-10, the Hy-
brid shows the highest overhead of all since it uses flooding to
discover registration path to IG. Control overhead increases pro-
portionally with the increase of average tree size in order of S1,
S2, and 3. The TB suffers from the occurrence of loop espe-
cially with S3 and thus shows a relatively high overhead and a
low registration ratio. However, the TB shows a good perfor-
mance with the scenario S1 which does hardly generate a loop
since its tree depth is small. On the other hand, the TB-LDR
shows the very stable and outstanding results for all the scenar-
ios and metrics.
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Figs. 11-14 shows the comparison of the three approaches
according to the variation of nNodes. In Fig. 11, the overhead of
the Hybrid is high and keep increasing according to the increase
of nNodes while that of the TB-LDR keeps low. The fact that
the TB-LDR sustains very stable against the change of nNodes
implies that the tree-based approach works very well unless a
loop takes place.

It is natural that the curve of the Hybrid is increasing since
the number of nodes increases. Meanwhile, the TB shows a
sharply increasing curve since the probability of loop forma-
tion increases for the more number of nodes. The occurrences
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Fig. 14. Registration jitter with varying node density (81, mSpeed = 10
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of loop are proved by the lower registration ratio in Fig. 12 and
the high registration latency in Fig. 13 for the TB with nNodes
= 100.

The increasing overhead due to flooding or looping directly
affects the other performance metrics such as latency and jitter
in Figs. 13 and 14,

Figs. 15-18 compare the approaches against the increase of
mSpeed. We use scenario S3 to effectively compare the scal-
ability of the approaches against the size of tree. According
to Fig. 15, the Hybrid and the TB shows higher sensitivity to
mSpeed than the TB-LDR. The former experiences the more
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Fig. 15. Control overhead with varying mSpeed (83, nNodes = 50}.
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Fig. 16. Registration ratio with varying mSpeed (S3, nNodes = 50).
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Fig. 17. Registration latency with varying mSpeed (83, nNodes = 50).

path explorations for registration due to the increased link fail-
ures while the latter experiences more loops due to the increased
orphan-nodes transiently. However, overhead in TB-LDR is not
very sensitive against the increasing node speed. Nevertheless,
it is worth noting that control overhead at mSpeed of 50 m/s is
almost twice as high as that at mSpeed of 0 m/s in Fig. 15 since
the more J-REQs are generated and some additional Hello mes-
sages are used to resolve a loop.

The registration ratio of the TB-LDR decreases quite sharply
after 10 m/s of mSpeed because the high node speed increases
link failure rate. We can tell that the TB-LDR is highly stable
against the increase of mSpeed overall.
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Fig. 18. Registration jitter with varying mSpeed (S3, nNodes = 50).

V. CONCLUSIONS

We identified a looping problem in the tree-based mobility
management and presented a LDR method to solve the looping
problem. We proved that the LDR method detects and resolves a
loop quickly by tracking the depth of trees and then we evaluated
its performance by resorting to simulation. We compared the
TB-LDR with the TB and the Hybrid. The simulation results
show that the TB-LDR far outperforms the others and is highly
scalable against the large size of trees and the high mobility of
nodes.
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