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INTRODUCTION

Lymphoma is a type of cancer involving cells of the im-
mune system, and has two major categories: Hodgkin lym-
phoma (HL) and all other lymphomas (non-HL). Although the 
two types may display the same symptoms, they are read-
ily distinguishable via microscopic examination, and differ in 
the way they develop, spread and are treated. HL is a unique 
clinicopathological disorder characterized by the rare pres-
ence of malignant cells (usually accounting for 0.1% to 10% 
of the cells in the total tumor mass) in a background of a non-
neoplastic cellular microenvironment comprising T- and B-
lymphocytes and other cell types (Weiss et al., 1999). In the 
United States, about 8,500 new cases of HL were expected to 
be diagnosed in 2010, and the overall incidence is increasing 
each year (Maggioncalda et al., 2011). 

Although the pathogenesis of HL is still largely unknown, 
the association of HL with Epstein-Barr virus (EBV) infection 
has been demonstrated in many reports. For examples, HL 
patients show elevated antibody titers to EBV antigens (Levine 
et al., 1971), and the risk of developing HL is increased up 
to three-fold in population that have experienced infectious 
mononucleosis caused by primary EBV infection (Gutensohn 
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and Cole, 1980), and EBV DNA/RNA can be detected in HL 
tissues (Brink et al., 1997), suggesting that as a primary event 
in the development of this disease, EBV infection may play a 
very crucial role in the pathogenesis of HL. 

According to a population-based cohort study, the frequen-
cy of EBV associated HL among total HL cases varies from 
30 to 50% (in certain cases even higher; >90% in develop-
ing and underdeveloped countries, and >95% in HIV associ-
ated cases), and most of them appear in classical Hodgkin 
lymphoma (cHL), the major type of HL (Herbst et al., 1991; 
Pallesen et al., 1991; Ambinder et al., 1993; Leoncini et al., 
1996). Since EBV is an oncogenic virus that is able to sub-
vert cellular processes supporting growth and survival, the ap-
proach to unravel the function of latent EBV genes expressed 
in cHL tissues will provide strategies for more novel and tar-
geted therapies for cHL patients. Thus, this review, based on 
considerable progress recently made regarding the pathways 
related to the generation of cHL over the past years, presents 
a summary of EBV antiviral drugs, the main characteristics of 
the disease entities, the data on the possible role of EBV in 
the pathogenesis of EBV-positive HL, and current therapeutic 
options including immunotherapy.
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Table 1. Antiviral therapeutic candidates targeting EBV replication

Target Structure Drug (prodrug) Mode of action References

EBV DNA Pol Acyclic nucleoside or
 nucleotide analogue

Acyclovir (valaciclovir)
Ganciclovir (valganciclovir)
Penciclovir (famiciclovir)
Adefovir 
Cidofovir

Competitive substrates or
 DNA chain terminator

(Purifoy et al., 1993)
(Jung and Dorr, 1999) 
(Boyd et al., 1986)
(Friedrichs et al., 2004)
(Friedrichs et al., 2004)

Pyrophosphate analogue Foscarnet, a phosphono-
 formic acid
Phosphonoacetic acid 

Pyrophosphate-binding
 site

(Datta and Hood, 1981)
(Yajima et al., 1976) 

Non-nucleoside 4-oxo-dihydroquinolines V823 of EBV DNA Pol (Hartline et al., 2005)
Molecules except for
 EBV DNA Pol

L-ribonucleoside Maribavir EBV ED-A (Gershburg et al., 2004) 
(Zacny et al., 1999)
(Gershburg and Pagano,
  2002)

L-nucleoside β-L-5-indodioxolane uracil
Indolocarbazole (NGIC-1)

nk
nk

(Kira et al., 2000)
(Gershburg et al., 2004)

Pol: polymerase, V823: valine at amino acid position 823, PK: protein kinase, nk: not known.

EBV INFECTION AND ANTIVIRAL DRUGS

EBV, a human γ herpes virus, is widely spread in human 
populations, and more than 95% of adults are EBV seroposi-
tive (Young and Rickinson, 2004). Primary EBV infection is 
usually asymptomatic in childhood, but the infection in adoles-
cence frequently results in infectious mononucleosis (IM), and 
is associated with a variety of human malignancies including 
Burkitt’s lymphoma, nasopharyngeal carcinoma, post-trans-
plant lymphoproliferative disease, as well as HL (Rowe et al., 
1986; Rickinson et al., 1987; Izumi and Kieff, 1997; Timms et 
al., 2003). 

For the treatment of acute EBV infection, many antiviral 
drugs have been suggested as potent therapeutic candidates, 
all of which inhibit EBV replication. From a target perspective, 
they fall into two groups (Table 1). The fi rst group includes acy-
clic nucleoside/nucleotide analogues and pyrophosphate ana-
logues, the target of which is the EBV DNA polymerase. De-
spite their effi cient inhibition of the viral polymerase in vitro in 
tissue culture experiments, they have displayed limitations by 
toxic side effects, poor oral bioavailability, and emergence of 
drug-resistant virus strains in in vivo treatment (Pagano et al., 
1983; Purifoy et al., 1993). Recently, through further searching 
for new therapeutic compounds with the enhanced specifi city 
in their antiviral action, a second group demonstrating unique 
modes of action has become available, which contains com-
pounds of a mixed nature with divergent structures. Among 
them, maribavir inhibits phosphorylation of the EBV DNA-
processivity factor, EA-D indirectly by an EBV protein kinase, 
BGLF4. Despite yet unspecifi ed modes of action in many 
cases, the common feature of this group is that their targets 
are located at molecules other than EBV DNA polymerase it-
self. However, in all cases, these anti-EBV drugs targeting the 
virus’s own replication process have limited use in the major-
ity of EBV-associated malignancies, in which EBV viruses are 
latently infected, because those drugs can function only when 
EBV replicates actively (van der Horst et al., 1991). In this 
respect, it is noteworthy that several groups have focused on 

the development of a potential method to induce a switch from 
latent to lytic infection with the subsequent treatment of those 
anti-EBV drugs as an option for the therapy of EBV-positive 
malignancies (Westphal et al., 2000; Daigle et al., 2011).

EBV LATENCY AND HL 

During primary infection, EBV is transmitted by acutely in-
fecting B cells in the oropharyngeal epithelium. This process 
results in a localized replicative infection through lytic cycles, 
some of which undergo latency by permanent infection of cir-
culating B cells. Most EBV associated malignancies including 
HL are characterized by such viral latency, in which viral ge-
nomes are replicated by host DNA polymerase only when cells 
divide, and propagate into progeny cells indefi nitely. There-
fore, the antiviral drugs aimed at viral replication processes 
listed in Table 1 would not affect EBV in the latent phase, as 
demonstrated by their lack of effect on latently EBV-infected 
cell lines or tumors (Pagano, 1995). This fact subsequently 
emphasizes the needs of special strategies for EBV-associat-
ed tumors distinct from those for the acute infection.

In latent infection, viral gene expression is tightly regulat-
ed with expression of only a limited number of EBV latency 
genes. Thus, only 12 genes of EBV can be expressed in dif-
ferent combinations during latent viral infection whereas about 
70 major open reading frames are expressed during the lytic 
cycle (Kieff, 1996). The EBV latency genes are expressed in 
4 programs: latency 0, I, II and III (Shah and Young, 2009). In 
latency III, all of the 12 latency genes are expressed, includ-
ing 6 nuclear proteins (EBNA 1, 2, LP, 3A, 3B, 3C), 3 mem-
brane proteins (LMP-1, LMP-2A and LMP-2B), BART, and 2 
small RNAs (EBER 1 and 2). In latency II, the viral genes for 
EBNA-1, the three membrane proteins, and the EBERs are 
expressed while in latency state 0/I, none or only EBNA-1 is 
expressed. B-lymphocytes in latency III are proliferating but 
highly immunogenic, while the remaining latency forms are 
seen in non-proliferating, resting cells. Among the 4 programs, 
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HL has been reported to be closely associated with latency II, 
expressing only 6 viral genes: EBNA1, EBER1 and 2, LMP1, 
and LMP2A and 2B (Murray et al., 1992; Deacon et al., 1993; 
Grasser et al., 1994; Chiang et al., 1996). 

According to its histopathological and clinical character-
istics, HL is categorized into 2 types: cHL, and the nodular 
lymphocyte predominance HL (NLPHL). About 95% of all HL 
cases represent cHL, while the rest are NLPHL (Niedobitek 
et al., 1997). As described, one of the most unique features 
of HL is the rarity of malignant cells in the tumor mass. The 
two types of HL have their own unique malignant cells, des-
ignated as mononuclear Hodgkin’s cells and multinucleated 
Reed-Sternberg (HRS) cells in cHL whereas they are called 
LP (lymphocyte predominant) cells in NLPHL, respectively 
(Poppema et al., 2008). Unlike the LP cells of NLPHL, EBV 
DNA genomes are frequently detected in HRS cells of cHL 
patients, in which the viruses display the type II form of latency 
expressing all of the type II-related 6 viral genes (Weiss et 
al., 1989; Weiss et al., 1999; Thomas et al., 2004; Kuppers, 
2009). Since EBV is an oncogenic virus, this high association 
rate with EBV in HRS cells strongly suggests a possible role of 
EBV latent gene expression in the generation of the malignan-
cies. Since the latent viral antigens are abundantly present in 
EBV-associated HRS cells, but not in the non-EBV-associated 
ones, providing extra targets for immunotherapy, the latent vi-
ral genes expressed in HRS cells and the related pathways 
have gained attention as additional therapeutic options in the 
case of EBV-associated cHL.

THERAPEUTIC STRATEGIES AGAINST cHL

Based on differences in histological features and cellular 
composition, cHL is further divided into 4 morphological sub-
types (Pileri et al., 2002; Eberle et al., 2009): nodular sclerosis 
(NS) which accounts for the majority of cases, mixed cellular-
ity (MC), lymphocyte-rich (LR), and lymphocyte-depleted (LD) 
HL. LRHL and LDHL each comprises less than 5% of all cHL 
cases, and the majority is the NSHL subtype (Table 2). The 
detection rate of EBV in cHL varies depending on multifacto-

rial etiological factors such as country, sex, ethnicity, and the 
age of patients. For example, EBV-positive cHL is less com-
mon in developed populations compared to underdeveloped 
countries (20-50% in North American and European countries 
vs. 60-100% in Peru and Kenya) (Weiss et al., 1991; Herbst 
et al., 1992; Hummel et al., 1992; Chang et al., 1993; Wein-
reb et al., 1996). Among the subtypes of cHL, EBV genomes 
or proteins more commonly appear in the MC subtype with 
an increased incidence but less frequently in the other sub-
types (Pallesen et al., 1991; Murray et al., 1992; Pinkus et al., 
1994). Despite the complexity in its histological and cellular 
characteristics, the primary therapeutic strategies against the 
all subtypes in cHL cases are similar because the immuno-
phenotypic and general features of the malignant cells of cHL, 
the HRS cells, are surprisingly alike irrespective of the subtype 
or the presence of EBV. 

With conventional chemotherapy, more than 80% of pa-
tients suffering from cHL are cured, which is otherwise a fa-
tal disease with 90% of untreated patients dying within 2 to 
3 years. However, up to 30% of patients with advanced HL 
will progress or relapse even after the therapeutic treatment 
(Connors et al., 2001); thus the development of new and more 
potent regimens with improved outcomes has become more 
necessary. In this respect, in addition to the general targets 
of HRS cells, the presence of EBV latent genes that are ex-
pressed in malignant cells provides an excellent opportunity 
for targeted therapy. 

Chemotherapy for early-stage cHL
Regardless of its type, data of patients with early-stage HL 

show that present therapies result in high expectations of cure 
for HL patients, and more than 80% of patients have had their 
cancer successfully eradicated. Currently, treatment options 
of HL are tailored to type, stage, patient age, and an assess-
ment of the risk of resistance (Diehl et al., 2003; Klimm et al., 
2005). The induction chemotherapy regimens given as the ini-
tial treatment for HL are shown in Table 3. Although ABVD is 
the gold standard for all early HL cases, there are several data 
suggesting improved outcomes using the aggressive escalat-
ed BEACOPP regimen in advanced-stage HL (Carbone et al., 

Table 2. Epidemiology of Hodgkin lymphoma and their EBV association

REAL/WHO
classifi cation

(% cases/total  HL)
Subtypes Malignant cell % cases of subtypes

Association level with 
EBV*

References

cHL (95%) HRS cell Positive or negative (Jarrett et al., 2005)
NSHL 60-80% of cHL ++ (Flavell et al., 2000) 

(Herbst et al., 1992)
MCHL 15-30% of cHL +++ (up to 96%) (Spitz et al., 1986) 

(Cleary et al., 1994)
LDHL <5% of cHL ++ (Slack et al., 2009)
LRHL <5% of cHL +/− (less than 10%) (Shimabukuro-Vorn- 

 hagen et al., 2005)
NLPHL (5%) LP cell Negative (Chan, 1999)

REAL/WHO: Revised European American Lymphoma (REAL)/World Health Organization, EBV: Epstein–Barr virus; cHL, classical Hodgkin 
lymphoma, NLPHL: nodular lymphocyte-predominant Hodgkin lymphoma, NS: nodular sclerosis, MC: mixed cellularity, LD: lymphocyte 
depletion, LR: lymphocyte-rich, HRS: Hodgkin/Reed–Sternberg, LP:  lymphocyte predominant.
*varies depending on genetic and environmental factors of the affected patients.
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2011). Although it has been reported that chemotherapy alone 
may be more effi cient for controlling some disease cases 
(Meyer et al., 2004), combined-modality therapy is currently 
the most common treatment of HL, which consists of an ab-
breviated course of chemotherapy and involved fi eld radiation. 

Treatment strategies for the patients with relapsed cHL
Although most HL patients attain a remission after induction 

chemotherapy, relapse rates range from 10-15% in the early 
stage (Specht et al., 1998) to 30-40% in the advanced stage 
(Oza et al., 1993). For patients with relapsed HL, high dose 
chemotherapy plus autologous hematopoietic stem cell trans-
plantation (HDC/HSCT) has become recognized as the most 
effective treatment.  However, the fact that more than 15% of 
the relapsed patients are still dying of progressive lymphoma 
after HDC/HSCT treatment stresses an obvious need for more 
successful therapeutic strategies.

Currently, one of the most promising types of treatment 
for HL is immunotherapy targeting the malignant HRS cells 
of cHL. Since HRS cells display virtually the same immuno-
pathological characteristics among different HL subtypes, 
drug development in HL has been based on the general un-
derstanding of cellular pathways altered in HRS cells and of 

interactions between HRS cells and the tumor microenviron-
ment (summarized in Fig. 1).

HRS cells: The most unique characteristic of HL compared 
to other tumors is the presence of a small number of malignant 
HRS cells in a background of non-neoplastic reactive lymphoid 
cell population. Although the origin of the HRS cells had been 
an issue of intense debate due to no obvious normal cellular 
counterpart to the phenotype of HRS cells, the presence of 
non-functional somatic mutations in rearranged immunoglob-
ulin genes of HRS cells confi rmed that they originate from pre-
apoptotic B cells that lost the capacity to express a high-affi ni-
ty B-cell receptor, which were then rescued from apoptosis by 
transforming events (Kuppers et al., 1994; Kuppers, 2003). To 
date, many cases of aberrant activation of signaling pathways 
and transcription factors involved in the rescue of HRS cells 
from apoptosis have been identifi ed, knowledge from which 
has been applied to the development of novel therapeutic 
agents for relapsed HL after primary treatment. 

Studies on signaling pathways of HRS cells have implicat-
ed deregulated activation of a variety of intercellular proteins 
(NF-κB, Jak/STATs, Akt/mTOR, Notch-1, and ERK) as well as 
surface receptors (CD30 and CD40) (Clodi and Younes, 1997; 
Fiumara et al., 2001; Younes et al., 2003; Zheng et al., 2003), 

Table 3. Conventional combination chemotherapeutic strategies for HL

Therapy 
regimen

Combination 
of agents

Description References

MOPP Mechlorethamine
Vincristine
Procarbazine
Prednisone

Developed in1964.
Derived by replacing methotrexate with
 procarbazine in MOMP, the fi rst
 combination chemotherapy for HL.

(Longo et al., 1986)

ABVD Adriamycin [doxorubicin]
Bleomycin
Vinblastine
Dacarbazine

Developed in the early 1970's as an
 alternative to MOPP. 
Currently is the standard chemotherapy
 regimen for treating HL.

(Boleti and Mead, 2007)

Stanford V Doxorubicin
Vinblastine
Mustard
Bleomycin
Vincristine
Etoposide
Prednisone

Developed in 1985 at Stanford
 University.
Characterized by frequent
 administration over a shorter period of
 time than the above regimens.

(Hoppe et al., 1985; Hoppe et al.,
 1989)

BEACOPP Bleomycin
Etoposide
Doxorubicin
Cyclophosphamide
Vincristine
Procarbazine
Prednisone

Developed in 1997 for advanced-stage
 HL

(Diehl et al., 1997)

Escalated BEACOPP Higher doses of etopo 
 side and doxorubicin
 and cyclophospha 
 mide and the addition
 of granulocyte colony -
 stimulating factor for
 neutrophil support

Modifi ed to improve treatment results
 with unfavorable and advanced-stage
 HL.

(Diehl et al., 1998a; Diehl et al., 1998b;
 Engert et al., 2009)
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which are highly associated with pro-survival signals. Each of 
these proteins can be a therapeutic target of selective small 
molecule inhibitors. The AKT/mTOR pathway is an intracel-
lular signaling pathway associated with the apoptotic process. 
In many malignant cells, this pathway is overactivated, and 
upon blockage of the pathway, cell cycle arrest and apopto-
sis of the cells subsequently take place. A preclinical study 
demonstrated that inhibition of mTOR, the mammalian target 
of rapamycin, caused apoptosis in HL cells. In addition, evero-
limus, a rapamycin-derived mTOR inhibitor, verifi ed antitumor 
activity in relapsed HL patients in the phase I clinical study 
(Jundt et al., 2005; Yee et al., 2006), suggesting mTOR inhibi-
tors as excellent therapeutic candidates for HL. Since NF-κB 
plays a central role in the regulation of various gene expres-
sion involved in cell survival, apoptosis, carcinogenesis, and 
infl ammation, this molecule has been regarded as a very po-
tential therapeutic target for many cancers (Baud and Karin, 
2009). Bortezomib, a tripeptide with pyrazinoic acid, phenyl-
alanine, and leucine with boronic acid, is a proteasome inhibi-
tor that hinders activation of NF-κB by inhibiting cytoplasmic 
IκBα degradation (O'Connor, 2005). In preclinical studies, it 
inhibited proliferation of HL cell lines, and induced cell cycle 
arrest as well as apoptosis (Adams, 2003; Zheng et al., 2004). 
Not only the intracellular proteins described above but also 
surface receptor molecules can be specifi c targets for HL ther-
apy. HRS cells characteristically express high levels of CD30 
and CD40, both of which play a role in the increased NF-κB 
activity observed in HL as a member of the TNF receptor fam-
ily. Immunotherapeutic agents targeting CD30 and CD40 are 
currently being evaluated for potential use in HL. Since they 
are surface receptor antigens that contain extracellular moi-
eties, various monoclonal antibodies (mAbs) and mAb-drug 
conjugates are easily accessible to their target molecules. 

Initially, unconjugated mAbs targeting CD30 (MDX-060 and 
SGN-30) were evaluated in relapsed HL clinical cases. The 
antibodies failed to show effi cient antitumor activity (Ansell et 
al., 2007; Forero-Torres et al., 2009; Blum et al., 2010), but 
a next-generation drug-antibody conjugate, SGN-35 (brentux-
imab vedotin), improved the modest clinical activity of the un-
conjugated mAbs. This potent immunotoxin contains the anti-
tubulin agent monomethyl auristatin E attached to SGN-30 
(Ofl azoglu et al., 2008).  The mAb-drug conjugate is rapidly in-
ternalized on CD30 binding. Recently, the U.S. Food and Drug 
Administration granted fast-track designation for SGN-35 for 
the treatment of HL. In case of anti-CD40 mAbs, HCD122 and 
SGN-40 had been evaluated in patients with CD40-express-
ing lymphoid malignancies (Law et al., 2005; Luqman et al., 
2008; Robak, 2008; Younes, 2009).

In addition to the drugs acting on specifi c target molecules, 
anticancer drugs that broadly inhibit the signaling pathways 
activated in HRS cells are often used for patients with refrac-
tory HL. These wide-ranging inhibitors, such as systemic che-
motherapeutic drugs, histone deacetylase (HDAC) inhibitors, 
and proteasome inhibitors, can modulate several unrelated 
signaling molecules (Bolden et al., 2006; Brogdon et al., 2007; 
Gediya et al., 2008; Tarasenko et al., 2008). Most systemic 
chemotherapeutic drugs with antitumor activity are DNA rep-
lication inhibitors. For patients with relapsed HL, systemic 
chemotherapeutic drugs, such as gemcitabine (a nucleoside 
analog), vinblastine (an anti-microtubule drug), fl udarabine (a 
purine analogue), and melphalan (an alkylating agent) have 
been used as a single agent or in combination regimens 
(Friedberg et al., 2003; Straus et al., 2011). 

HDACs in cooperation with histone acetyltransferases 
(HATs) play an important role in epigenetic regulation of broad 
gene expression via post-transcriptional modifi cation of his-

Fig. 1. Current and future therapeutic targets for HRS cells. A number of clinical trial targets for HRS cells have been identifi ed and several 
novel treatments for HL therapy are under investigation. Many current approaches to handle relapsed HL aim to control specifi c target mol-
ecules that are related to the survival of HRS cells. In this respect, viral specifi c antigens expressed from EBV, a possible etiological agent 
for malignant HRS cells, are very attractive targets for development of a novel therapy. On the left of the fi gure are illustrated general targets 
for HRS cells, irrespective of the presence of EBV, with their related therapeutic options. On the right are targets specifi c for EBV-associated 
HRS cells. Targets expressed on the cells in tumor microenvironment are shown on the bottom left side. Gray circles and lightly shaded text 
boxes denote targets and their responding therapeutic option partners, respectively. 
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tone proteins. The balance between the two enzymes is criti-
cal for regulating the expression and the functional status of 
a variety of proteins that are involved in cell proliferation, sur-
vival, and immunity (Glozak et al., 2005; Bolden et al., 2006; 
Brogdon et al., 2007). Unbalanced activities between HDAC 
and HAT have been reported in several malignancies, includ-
ing HL (Glozak et al., 2005), implying HDAC inhibitors as a 
potential therapeutic target for HL. HDAC inhibitors, such as 
vorinostat (a suberoylanilide hydroxamic acid), mocetinostat 
(a benzamide), panobinostat (a hydroxamic acid), entinostat 
(a benzamide), are currently under phase I or II trials for re-
lapsed HL (Dickinson et al., 2009; Boumber et al., 2011; Jona 
et al., 2011; Kirschbaum et al., 2011).

Tumor microenvironment in HL: The nature of the aberrant 
immune response in the vicinity of HRS cells is very unique. 
Pathologic examination of infi ltrating cells around HRS cells 
demonstrated that CD4 T cells, eosinophils, B cells, and mac-
rophages, are abundantly present favorably producing TH2 
and immunosuppressive chemokines/cytokines, whereas 
CD8 T cells and NK cells are generally sparse. This tumor mi-
croenvironment plays a signifi cant role in the maintenance of 
ineffective immunity against HRS cells (Poppema et al., 1999; 

Lamprecht et al., 2008; Aldinucci et al., 2010), providing a fa-
vorable milieu for HRS cells to proliferate and escape from 
apoptosis and host antitumor defenses.

Therapeutic strategies targeting the tumor microenviron-
ment had been evaluated by targeting CD20 in healthy B cells 
using rituximab (Coiffi er et al., 1998), an anti-CD20 mAb, in 
patients with relapsed HL. CD20 is highly expressed on reac-
tive B cells present in the tumor infi ltrates whereas its surface 
expression on HRS cells is very low (Foss et al., 1999). The 
treatment of rituximab eliminates CD20-positive reactive B 
cells that are supportive to HRS cells, subsequently depriving 
the malignant cells of survival signals. Promising results in re-
lapsed cHL therapy have been reported in clinical trials testing 
rituximab (Oki and Younes, 2010).

Another potential therapeutic agent targeting the tumor mi-
croenvironment of HL is lenalidomide, a thalidomide-deriva-
tive. Lenalidomide functions at multiple steps, including direct 
induction of apoptosis in tumor cells as well as activation of 
killer cells (Bartlett et al., 2004). An international phase I/II 
study with lenalidomide for elderly HL patients had been initi-
ated (Boll et al., 2010).

Table 4. Functions of six EBV genes expressed in HRS cells 

EBV genes
expressed 

in HRS cells
Functions (target cellular proteins) Therapeutic strategies References

EBER 1 and 2 Cell growth (IGF-1, IL-6, IL-9)
Modulation of immune response
 (IL-10, TLR3, RIG-1)
Inhibition of apoptosis (PKR)

Nt (Ho et al., 1999; Komano et al.,
 1999; Kitagawa et al., 2000;
 Yamamoto et al.., 2000; Iwakiri
 et al., 2003; Iwakiri et al., 2005;
 Samanta et al., 2006; Samanta et
 al., 2008; Iwakiri et al., 2009; Iwakiri
 and Takada, 2010)

EBNA1 Modulation of EBV DNA replication
Maintenance of EBV episome
Inhibition of apoptosis (survivin)

Enhanced proteosomal degradation
 (enhancement of immunogenicity)

(Tellam et al., 2001)

LMP1 Inhibition of apoptosis (NF-κB, PI3K/
 Akt/mTOR, Jak/STAT)
Immunesuppressor (IL-10)

Enhanced proteosomal degradation
 (enhancement of immunogenicity,
 and rescue from oncogenic
 phenotypes)
Adoptive immunotherapy (transfer
 of LMP1-specifi c CTLs, or primed
 DCs)
Immunization with LMP1 gene or
 polyepitope expression vectors

(Duraiswamy et al., 2003; Tellam et
 al., 2003; Taylor et al., 2004; Smith
 et al., 2006; Pan et al., 2009; 
 Lutzky et al., 2010; Chia et al.,
 2011)

LMP2A Prosurvival signal (Ras/PI3K/Akt,
 Notch and β-catenin/Wnt)
Modulation of innate immune
 response

Adoptive immunotherapy (transfer
 of LMP2A-specifi c CTLs, or primed
 DCs)
Immunization with LMP2A gene or
 polyepitope expression vectors

(Taylor et al., 2004; Smith et al.,
 2006; Pan et al., 2009; Shah et al.,
 2009; Lutzky et al., 2010; Chia et
 al., 2011)

LMP2B Modulation of innate immune
 response

nt (Shah et al., 2009)

TLR: Toll-like receptor, RIG: retinoic acid-inducible gene, PKR: RNA-dependent protein kinase, Nt: not tested, CTL: cytotoxic T lymphocyte, 
DC: dendritic cells.
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Treatment strategies for the patients with EBV-associated 
cHL 

The incidence of high relapse rates in EBV-associated HL 
compared to non-EBV-associated HL after primary treatment 
is still confl icting. However, in population-based studies have 
consistently shown a noticeable survival disadvantage in EBV-
positive HL especially in the case of older patients (Enblad et 
al., 1999; Clarke et al., 2001; Stark et al., 2002), indicating the 
infl uence of EBV existence in HRS cells on clinical outcome. 
Furthermore, the fact that an EBV transforming protein, LMP1, 
is expressed almost 100% in HRS cells of HL in HIV-infected 
patients suggests that EBV may play as a crucial etiological 
agent in the generation of HRS cells, at least in certain circum-
stances (Thompson et al., 2004; Carbone et al., 2009).

EBV infection in HRS cells exhibits the pattern of the type II 
latency, expressing only a limited number of viral genes: EB-
ERs, EBNA1, LMP1, LMP2A and 2B. Thus, the viral genes 
expressed during the type II latency are hypothetically the 
most excellent candidates for the therapeutic target against 
the malignant HRS cells of HL (Table 4). 

EBERs: EBV-encoded small RNA 1 and 2 (EBER1 and 
EBER2) are nonpolyadenylated and noncoding RNAs of 167 
and 172 nucleotides, respectively (Rosa et al., 1981). They 
form stem-loop double-stranded RNA (dsRNA) structures by 
intermolecular base-pairing, which enable them to interact 
with several cellular proteins (Ho et al., 1999). It has been 
demonstrated that EBERs play a role in EBV-mediated on-
cogenesis in EBV latently-infected cells. First, EBERs affect 
membrane signaling by initiating the production of various in-
terleukins (ILs) that are involved in cell growth, such as IL-6, 
IL-9, or insulin-like growth factor-1 (Ho et al., 1999; Kitagawa 
et al., 2000; Iwakiri et al., 2003; Iwakiri et al., 2005). They also 
play a role in regulation of apoptosis by binding the RNA-de-
pendent protein kinase (PKR), subsequently inhibiting PKR-
mediated apoptosis in the EBV infected cells (Komano et al., 
1999; Yamamoto et al., 2000). In addition, EBERs can modu-
late interferon (IFN)/antiviral response. It was demonstrated 
that EBERs induce expression of type-I IFNs by binding to the 
retinoic acid-inducible gene I (RIG-I) product that is a cytosolic 
protein that recognizes viral dsRNA inside the cell (Samanta 
et al., 2006). Another evidence of a role of EBERs in innate 
immunity is their binding to Toll-like receptor 3 after secret-
ed from EBV-infected cells (Iwakiri et al., 2009; Iwakiri and 
Takada, 2010), triggering innate immunity that might explain 
immunopathologic diseases caused by active EBV infection. 
However, EBERs also induce an anti-infl ammatory cytokine, 
IL-10, through RIG-1-mediated interferon regulatory factor 
(IRF) 3 (Samanta et al., 2008), suggesting that modulation of 
innate immune signaling by EBERs may contribute to EBV-
mediated oncogenesis. 

In all types of EBV-associated cancers, EBERs are abun-
dantly expressed (Forte and Luftig, 2011). This fact makes 
EBERs a potentially important target for novel therapies for 
EBV-associated cancers including HL. However, other studies 
have found that EBERs are not essential for primary infec-
tion, viral replication, or B-cell immortalization (Swaminathan 
et al., 1991). Furthermore, deletion of EBERs showed little ef-
fect on the EBV transformation frequency of primary B cells 
(Gregorovic et al., 2011). Thus, to develop novel therapeutic 
approaches to EBV-associated cancers based on their EBER 
expression, clear mechanisms of EBERs should be identifi ed 
by further studies.

EBNA1: EBNA1 is an indispensable protein for viral DNA 
replication and maintenance of the viral episome in infected 
cells (Hsieh et al., 1993). It has been shown that EBNA1 not 
only promotes the effi ciency of immortalization of human pri-
mary B cells in vivo, but also inhibits apoptosis by up-regulat-
ing the apoptosis suppressor protein, survivin (Humme et al., 
2003; Lu et al., 2011), suggesting that it may play a direct role 
in the pathogenesis of EBV-associated malignancies. 

Since EBNA1 is consistently expressed not only in chronic 
active EBV infection, but also in all EBV-associated malignan-
cies (Yoshioka et al., 2003), the viral antigen has been sug-
gested as a very potent target for immunotherapy against HL. 
However, it is not easy to detect EBNA1-specifi c cytotoxic T 
lymphocytes (CTLs) from blood taken during primary infection 
or from healthy virus carriers (Masucci et al., 1992; Rickin-
son et al., 1992; Steven et al., 1996), because EBNA1 is pro-
tected from processing and presentation via the MHC class 
I pathway due to its internal Glycine-Alanine repeat (GAr) 
domain (Levitskaya et al., 1995), which acts as a inhibitory 
signal to prevent proteasome dependent degradation of this 
antigen (Levitskaya et al., 1997). Nevertheless EBNA1 is a 
very attractive viral antigen for a therapeutic target due to 
its ubiquitous presence in all EBV infected cells, and novel 
strategies to avoid the restricted class I processing of EBNA1 
have been reported by several groups. In the experiment of 
Tellam and his collegues, the EBNA1 gene was covalently 
linked with ubiquitin, and subject to targeting to the N-end rule 
pathway, in which the stability level of a protein in vivo can be 
dramatically changed by the identity of its N-terminal residue 
(Varshavsky, 1996; Tobery and Siliciano, 1999; Dantuma et 
al., 2000). These modifi cations dramatically enhanced intra-
cellular degradation of the protein and restored CD8+ T cell 
recognition, demonstrating that GAr-mediated proteosomal 
blockade on EBNA1 can be reversed (Tellam et al., 2001). 
Moreover, it was demonstrated that CD8 T cells from patients 
with HL were successfully stimulated in vitro with a construct 
containing a GAr-deleted EBNA1, reversing the functional T 
cell impairment as well as responding to tumor cells express-
ing EBNA1 (Smith et al., 2006). 

Currently, it is not easy to discover a therapeutic drug that 
specifi cally modulates the degradation of EBNA1. However, if 
fi ne pharmacologic manipulation of the ubiquitin proteasome 
system that could alter the outcome of many diseases be-
come possible, one might be able to develop highly specifi c 
drugs that target the degradation pathways of a single or a 
few proteins with no side effect on other proteins (Reinstein 
and Ciechanover, 2006). 

EBV-encoded latent membrane proteins, LMP1, LMP2A, 

and 2B: LMP1 acts as a constitutively active receptor in a 
ligand-independent manner, mimicking CD40 (Gires et al., 
1997). It activates the majority of signaling pathways that are 
known to be activated in HRS cells, including NF-κB, PI3K/
Akt/mTOR, and Jak/STAT pathways, thereby induces vari-
ous antiapoptotic proteins and cytokines (Chen et al., 2003; 
Lambert and Martinez, 2007; Kung et al., 2011). Since normal 
germinal center B cells that lack BCR in their cell surfaces are 
eliminated by apoptosis, the HRS precursor cell is assumed to 
be rescued by LMP1 that plays a critical role in the protection 
of B cells from apoptotic death by up-regulating several anti-
apoptosis genes (Asso-Bonnet et al., 1998; Lee et al., 2003). 

The LMP2 gene encodes two protein isoforms, LMP2A and 
LMP2B. They are identical except for an additional 119 aa-



405

Lee.   Therapeutic Strategies for EBV-Associated cHL 

www.biomolther.org

long cytoplasmic region at the amino-terminus of the LMP2A 
isoform (Longnecker and Kieff, 1990). LMP2A mimics BCR, 
thereby provides an essential prosurvival signal for B cells. 
In EBV-infected B cells, LMP2A functions to promote viral la-
tency, providing signals to ensure cell survival in the absence 
of BCR signaling (Longnecker, 2000). It can enhance cell 
growth, survival, and cellular differentiation through activa-
tion of the Ras/PI3K/Akt, Notch and β-catenin/Wnt signaling 
pathways (Scholle et al., 2000; Morrison et al., 2003; Ander-
son and Longnecker, 2008). Compared to LMP2A, the role 
of LMP2B are relatively unknown. Recently, it was reported 
that LMP2B as well as LMP2A modulate signaling from recep-
tors involved in innate immune responses (Shah et al., 2009). 
Overall, the two viral proteins, LMP1 and LMP2A, are consid-
ered the major players in the generation of EBV-associated 
HRS phenotypes (Bechtel et al., 2005).

Use of mAbs as immunotoxins against the upregulated sur-
face molecules of HRS cells, such as CD30 and CD40, for 
targeted immunotherapy was stated in the previous section. 
In order to function as a potent target molecule against im-
munotoxins, the presence of an extracellular domain and its 
easy accessibility are essential, which are lacking in LMP1 as 
well as LMP2A (Flanagan et al., 2003). These LMPs contain 
relatively large cytoplasmic domains with extremely short ex-
tracellular loops connecting transmembrane segments, which 
are not easily accessible by antibodies (Gires et al., 1997; 
Panousis and Rowe, 1997; Lynch et al., 2002). Moreover, 
the extracellular loop regions marginally elicit antibodies in 
the course of natural infection and tumorigenesis (Paramita 
et al., 2011). Thus, despite their abundance, antibody-based 
targeting of LMP1 or LMP2 on EBV-positive HRS cells has low 
therapeutic possibilities. 

Recently, it was shown that conformational peptides mim-
icking two adjacent loops of LMP1 induce high-affi nity antibod-
ies with antitumor activities in mice (Delbende et al., 2009). 
However, unlike the in vivo experimental animal settings, the 
induction of effective CTL responses against those proteins 
has showed diffi culties per se due to unique characteristics of 
HRS cells and their microenvironment as described (Marshall 
et al., 2003). For example, in vitro HRS cells that present epit-
opes from LMP1 and LMP2A are subject to lysis by EBV-spe-
cifi c CTLs, but EBV-infected HRS cells survive in vivo (Sing 
et al., 1997; Chapman et al., 2001; Su et al., 2001).  Thus, 
although EBV-associated HL patients initially achieve an ef-
fective anti-EBV response after the period of fi rst EBV infec-
tion, they do not completely eradicate EBV-infected HRS cells. 
In addition, despite the presence of EBV-specifi c CTLs in the 
peripheral blood, the CTLs are not found in the immediate sur-
rounding area of EBV-positive HRS cells (Frisan et al., 1995). 
Thus, for successful CTL therapy for EBV-positive HL, not only 
effective EBV-specifi c CTLs, but possibly also the modulation 
of the tumor microenvironment to eliminate the barriers that 
inhibit CTL function will be required.

Nevertheless, these LMP molecules still draw attention as 
major targets for therapeutic purposes. Since patients with HL 
display functional impairment of CTL, adoptive cellular immu-
notherapy based on effi cient EBV-specifi c CTL cells may pro-
vide an answer to success. Development of an epitope-based 
vaccination strategy to augment EBV-specifi c cytolytic activity 
of CTLs is currently paid attention to as one of the preferred 
approaches for the treatment of EBV-associated relapsed HL. 
Firstly, effi cient antigen (epitope) presentation by antigen pre-

senting cells may improve the CTL activities. The therapeutic 
potentials of dendritic cell (DC) vaccine transduced by a recom-
binant vaccinia or adeno-associated virus carrying LMP1 and 
LMP2 CTL epitope DNA were evaluated, and the treatment of 
the vaccine was effective on eliminating tumors of syngeneic 
animals (Taylor et al., 2004; Pan et al., 2009). And a phase II 
study on vaccination of autologous DCs transduced with an 
adenovirus encoding a truncated LMP1 and full-length LMP2 
is under evaluation for the safety and effi cacy for patients with 
metastatic EBV-positive nasopharyngeal carcinoma (Lutzky et 
al., 2010; Chia et al., 2011). In this case, the truncated form 
of LMP1 was utilized because the full-length protein has both 
oncogenic and immunosuppressive properties (Gottschalk et 
al., 2003). Secondly, antigen presentation by polyepitope vac-
cines may enhance CTL activities. A polyepitope comprises 
at least one recombinant protein including multiple CTL epi-
topes from one or more pathogens. A recombinant poxvirus 
vaccine encoding a polyepitope derived from LMP1, called as 
an LMP1 polyepitope vaccine, displayed stronger anti-LMP1 
responses (Duraiswamy et al., 2003). In addition, an exposure 
to a replication-defi cient adenoviral system with polyepitopes 
from LMP1 or LMP2 induced effective expanding of specifi c 
T cells. HL patients with this adenoviral construct in combina-
tion with IL-2, were suffi cient to reverse the functional T cell 
impairment and restored cytolytic function (Smith et al., 2006). 
Like EBNA1, LMP1 molecules can be effi ciently presented via 
cotranslational ubiquitination combined with N-end rule target-
ing. Since this method is involved with enhanced degradation 
of LMP1, this strategy completely abrogates cellular signal-
ing pathways associated with the oncogenic phenotype, and 
helps in enhancing immunogenicity (Tellam et al., 2003), sug-
gesting that the proteasomal targeting strategy could be thera-
peutically utilized for various tumor-associated oncogenes.

  
CONCLUSIONS

In the early twentieth century, cHL was incurable in most 
cases. Although cHL is currently considered one of the most 
curable forms of cancer with conventional chemotherapy, 
therapeutic challenges still remain, especially in fi nding novel 
strategies to control patients with relapsed cHL, albeit in small 
numbers. Since immunopathogenic features of HRS cells are 
very similar in both EBV-positive cHL and EBV-negative cHL, 
efforts to fi nd cellular targets for drug development to treat cHL 
have been mainly focused on common phenotypes of HRS 
cells regardless of the presence of EBV. However, the pres-
ence of EBV-latent antigens abundantly expressed in the ma-
lignant HRS cells represents an attractive therapeutic option 
for targeted immunotherapy. Through continued researches of 
existing and new treatment options for cHL, advances should 
continue to be made.
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