References
- S. Shukla, S. Patil, S.C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, and S. Seal, "Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor", Sens. Actuators B, vol. 96, pp. 343-353, 2003. https://doi.org/10.1016/S0925-4005(03)00568-9
-
I. S. Bae, H-K. Lee, K-J. Hong, W-S. Lee, and J-S. Park, "Properties of
$Fe_2O_3$ -doped$SnO_2$ Oxides for CO Sensor", J. kor. Sensors soc., vol. 10, no. 4, pp. 222-231, 2001. -
J. Kim, S. D. Han, H. J. Lim, and Y. M. Son, "Sensing characteristics of
$SnO_2$ type CO sensors for combustion exhaust gases monitoring", J. kor. Sensors soc., vol. 6, no. 5, pp. 369-375, 1997. -
J-H. Jeun and S-H. Hong, "CuO-loaded nano-porous
$SnO_2$ films fabricated by anodic oxidation and RIE process and their gas sensing properties", Sens. Actuators B, vol. 151, pp. 1-7, 2010. https://doi.org/10.1016/j.snb.2010.10.002 -
J. Kaur, S. C. Roy, and M. C. Bhatnagar, "Highly sensitive
$SnO_2$ thin film$NO_2$ gas sensor operating at low temperature", Sens. Actuators B, vol. 123, pp. 1090-1095, 2007. https://doi.org/10.1016/j.snb.2006.11.031 -
W-S. Kim, B-S. Lee, D-H. Kim, H-C. Kim, W-R. Yu, and S-H. Hong, "
$SnO_2$ nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance", Nanotechnology, vol. 21, pp. 245605, 2010. https://doi.org/10.1088/0957-4484/21/24/245605 - A. A. Tomchenko, G. P. Harmer, and B. T. Marquis, "Detection of chemical warfare agents using nanostructured metal oxide sensors", Sens. Actuators B, vol. 108, pp. 41-55, 2005. https://doi.org/10.1016/j.snb.2004.11.059
- N-J. Choi, Y-S. Lee, J-H. Kwak, J-S. Park, K-B. Park, K-S. Shin, H-D. Park, J-C. Kim, J-S. Huh, and D-D. Lee, "Chemical warfare agent sensor using MEMS structure and thick film fabrication method", Sens. Actuators B, vol. 108, pp. 177-183, 2005. https://doi.org/10.1016/j.snb.2005.01.041
- S. W. Oh, Y. H. Kim, D. J. Yoo, S. M. Oh, and S. J. park, "Sensing behaviour of semiconducting metal oxides for the detection of organophosphorus compounds", Sens. Actuators B, vol. 13-14, pp. 400- 403, 1993.
-
S. M. Kanan, A. Waghe, B. L. Jensen, and C. P. Tripp, "Dual
$WO_3$ based sensors to selectively detect DMMP in the presence of alcohols", Talanta, vol. 72, pp. 401-407, 2007. https://doi.org/10.1016/j.talanta.2006.10.046 - J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, and R. A. McGill, "Nerve agent detection using networks of single-walled carbon nanotubes", Appl. Phys. Lett., vol. 83, pp. 4026-4028, 2003. https://doi.org/10.1063/1.1626265
- X. Du, Z. Wang, J. Huang, S. Tao, X. Tang, and Y. Jiang, "A new polysiloxane coating on QCM sensor for DMMP vapor detection", J. Mater. Sci., vol. 44, pp. 5872-5876, 2009. https://doi.org/10.1007/s10853-009-3829-5
-
Y. Zhao, J. He, M. Yang, S. Gao, G. Zuo, C. Yan, and Z. Cheng, "Single crystal
$WO_3$ nanoflakes as quartz crystal microbalance sensing layer for ultrafast detection of trace sarin simulant", Anal. Chim. Acta., vol. 654, pp. 120-126, 2009. https://doi.org/10.1016/j.aca.2009.09.029 -
G. Zuo, X. Li, P. Li, T. Yang, Y. Wang, Z. Cheng, and S. Feng, "Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized
$SiO_2$ microcantilever piezoresistive sensor", Anal. Chim. Acta., vol. 580, pp. 123-127, 2006. https://doi.org/10.1016/j.aca.2006.07.071 -
Y. Yang, H-F. Ji, and T. Thundat, "Nerve agents detection using a
$Cu^{2+}$ /L-cysteine bilayer-coated microcantilever", J. Am. Chem. Soc., vol. 125, pp. 1124-1125, 2003. https://doi.org/10.1021/ja028181n - X. Du, Z. Ying, Y. Jiang, Z. Liu, T. Yang, and G. Xie, "Synthesis and evaluation of a new polysiloxane as SAW sensor coatings for DMMP detection", Sens. Actuators B, vol. 134, pp. 409-413, 2008. https://doi.org/10.1016/j.snb.2008.05.016
- W. Wang, S. He, S. Li, and Y. Pan, "High frequency stability oscillator for surface acoustic wave-based gas sensor", Smart Mater. Struct., vol. 15, pp. 1525-1530, 2006. https://doi.org/10.1088/0964-1726/15/6/003
- B. Aurian-Blajeni and M. M. Boucher, "Interaction of dimethyl methylphosphonate with metal oxides", Langmuir, vol. 5, pp. 170-174, 1989. https://doi.org/10.1021/la00085a032
-
C. S. Kim, R. J. Lad, and C. P. Tripp, "Interaction of organophosphorous compounds with
$TiO_2$ and$WO_3$ surfaces probed by vibrational spectroscopy", Sens. Actuators B, vol. 76, pp. 442-448, 2001. https://doi.org/10.1016/S0925-4005(01)00653-0 -
S. C. Lee, H. Y. Choi, S. J. Lee, W. S. Lee, J. S. Huh, D. D. Lee, and J. C. Kim, "The development of
$SnO_2$ - based recoverable gas sensors for the detection of DMMP", Sens. Actuators B, vol. 137, pp. 239-245, 2009. https://doi.org/10.1016/j.snb.2008.12.051 -
W. S. Lee, S. C. Lee, S. J. Lee, D. D. Lee, J. S. Huh, H. K. Jun, and J. C. Kim, "The sensing behavior of
$SnO-2$ -based thick-film gas sensors at a low concentration of chemical agent simulants", Sens. Actuators B, vol. 108, pp. 148-153, 2005. https://doi.org/10.1016/j.snb.2005.01.045 -
M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, and J. Szuber, "XPS study of the surface chemistry of L-CVD
$SnO_2$ thin films after oxidation", Thin Solid Films, vol. 490, pp. 36-42, 2005. https://doi.org/10.1016/j.tsf.2005.04.014 - S. Oswald and W. Bruckner, "XPS depth profile analysis of non-stoichiometric NiO films", Surf. Interface. Anal., vol. 36, pp. 17-22, 2004. https://doi.org/10.1002/sia.1640
- F. Garbassi, "XPS and AES study of antimony oxides", Surf. Interface. Anal., vol. 2, pp. 165-169, 1980. https://doi.org/10.1002/sia.740020502
-
N. Ozer, D-G. Chen, and C. M. Lampert, "Preparation and properties of spin-coated
$Nb_2O_5$ films by the solgel process for electrochromic applications", Thin Solid Films, vol. 277, pp. 162-168, 1996. https://doi.org/10.1016/0040-6090(95)08011-2 - L. Cao, S. R. Segal, and S. L. Suib, X. Tang, S. Satyapal, "Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides", J. Catalysis, vol. 194, pp. 61-70, 2000. https://doi.org/10.1006/jcat.2000.2914
Cited by
- Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant vol.221, 2015, https://doi.org/10.1016/j.snb.2015.06.076
- Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles /ZnO flowers heterojunction vol.240, 2017, https://doi.org/10.1016/j.snb.2016.09.028
- Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents vol.48, pp.5, 2018, https://doi.org/10.1080/10408347.2018.1439366