DOI QR코드

DOI QR Code

Effects of Additives on the DMMP Sensing Behavior of SnO2 Nanoparticles Synthesized by Hydrothermal Method

  • Kim, Hong-Chan (Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University) ;
  • Hong, Seong-Hyeon (Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University) ;
  • Kim, Sun-Jung (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Received : 2011.07.26
  • Accepted : 2011.09.15
  • Published : 2011.09.30

Abstract

$SnO_2$ nanoparticles were synthesized by a hydrothermal method and gas sensors were fabricated using nanoparticles to detect dimethyl methylphosphonate(DMMP) gas. The prepared $SnO_2$ nanoparticles exhibited a high response(72 at $500^{\circ}C$) to 5 ppm DMMP gas compared to commercial $SnO_2$ nanopowders, but their recovery was relatively poor. Various metals(Ni, Sb, Nb) were added to the $SnO_2$ nanoparticles to improve their recovery properties. The focus of this study was to investigate the effects of metal oxide additives on DMMP sensing behavior in $SnO_2$ nanoparticles.

Keywords

References

  1. S. Shukla, S. Patil, S.C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, and S. Seal, "Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor", Sens. Actuators B, vol. 96, pp. 343-353, 2003. https://doi.org/10.1016/S0925-4005(03)00568-9
  2. I. S. Bae, H-K. Lee, K-J. Hong, W-S. Lee, and J-S. Park, "Properties of $Fe_2O_3$-doped $SnO_2$ Oxides for CO Sensor", J. kor. Sensors soc., vol. 10, no. 4, pp. 222-231, 2001.
  3. J. Kim, S. D. Han, H. J. Lim, and Y. M. Son, "Sensing characteristics of $SnO_2$ type CO sensors for combustion exhaust gases monitoring", J. kor. Sensors soc., vol. 6, no. 5, pp. 369-375, 1997.
  4. J-H. Jeun and S-H. Hong, "CuO-loaded nano-porous $SnO_2$ films fabricated by anodic oxidation and RIE process and their gas sensing properties", Sens. Actuators B, vol. 151, pp. 1-7, 2010. https://doi.org/10.1016/j.snb.2010.10.002
  5. J. Kaur, S. C. Roy, and M. C. Bhatnagar, "Highly sensitive $SnO_2$ thin film $NO_2$ gas sensor operating at low temperature", Sens. Actuators B, vol. 123, pp. 1090-1095, 2007. https://doi.org/10.1016/j.snb.2006.11.031
  6. W-S. Kim, B-S. Lee, D-H. Kim, H-C. Kim, W-R. Yu, and S-H. Hong, "$SnO_2$ nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance", Nanotechnology, vol. 21, pp. 245605, 2010. https://doi.org/10.1088/0957-4484/21/24/245605
  7. A. A. Tomchenko, G. P. Harmer, and B. T. Marquis, "Detection of chemical warfare agents using nanostructured metal oxide sensors", Sens. Actuators B, vol. 108, pp. 41-55, 2005. https://doi.org/10.1016/j.snb.2004.11.059
  8. N-J. Choi, Y-S. Lee, J-H. Kwak, J-S. Park, K-B. Park, K-S. Shin, H-D. Park, J-C. Kim, J-S. Huh, and D-D. Lee, "Chemical warfare agent sensor using MEMS structure and thick film fabrication method", Sens. Actuators B, vol. 108, pp. 177-183, 2005. https://doi.org/10.1016/j.snb.2005.01.041
  9. S. W. Oh, Y. H. Kim, D. J. Yoo, S. M. Oh, and S. J. park, "Sensing behaviour of semiconducting metal oxides for the detection of organophosphorus compounds", Sens. Actuators B, vol. 13-14, pp. 400- 403, 1993.
  10. S. M. Kanan, A. Waghe, B. L. Jensen, and C. P. Tripp, "Dual $WO_3$ based sensors to selectively detect DMMP in the presence of alcohols", Talanta, vol. 72, pp. 401-407, 2007. https://doi.org/10.1016/j.talanta.2006.10.046
  11. J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, and R. A. McGill, "Nerve agent detection using networks of single-walled carbon nanotubes", Appl. Phys. Lett., vol. 83, pp. 4026-4028, 2003. https://doi.org/10.1063/1.1626265
  12. X. Du, Z. Wang, J. Huang, S. Tao, X. Tang, and Y. Jiang, "A new polysiloxane coating on QCM sensor for DMMP vapor detection", J. Mater. Sci., vol. 44, pp. 5872-5876, 2009. https://doi.org/10.1007/s10853-009-3829-5
  13. Y. Zhao, J. He, M. Yang, S. Gao, G. Zuo, C. Yan, and Z. Cheng, "Single crystal $WO_3$ nanoflakes as quartz crystal microbalance sensing layer for ultrafast detection of trace sarin simulant", Anal. Chim. Acta., vol. 654, pp. 120-126, 2009. https://doi.org/10.1016/j.aca.2009.09.029
  14. G. Zuo, X. Li, P. Li, T. Yang, Y. Wang, Z. Cheng, and S. Feng, "Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized $SiO_2$ microcantilever piezoresistive sensor", Anal. Chim. Acta., vol. 580, pp. 123-127, 2006. https://doi.org/10.1016/j.aca.2006.07.071
  15. Y. Yang, H-F. Ji, and T. Thundat, "Nerve agents detection using a $Cu^{2+}$/L-cysteine bilayer-coated microcantilever", J. Am. Chem. Soc., vol. 125, pp. 1124-1125, 2003. https://doi.org/10.1021/ja028181n
  16. X. Du, Z. Ying, Y. Jiang, Z. Liu, T. Yang, and G. Xie, "Synthesis and evaluation of a new polysiloxane as SAW sensor coatings for DMMP detection", Sens. Actuators B, vol. 134, pp. 409-413, 2008. https://doi.org/10.1016/j.snb.2008.05.016
  17. W. Wang, S. He, S. Li, and Y. Pan, "High frequency stability oscillator for surface acoustic wave-based gas sensor", Smart Mater. Struct., vol. 15, pp. 1525-1530, 2006. https://doi.org/10.1088/0964-1726/15/6/003
  18. B. Aurian-Blajeni and M. M. Boucher, "Interaction of dimethyl methylphosphonate with metal oxides", Langmuir, vol. 5, pp. 170-174, 1989. https://doi.org/10.1021/la00085a032
  19. C. S. Kim, R. J. Lad, and C. P. Tripp, "Interaction of organophosphorous compounds with $TiO_2$ and $WO_3$ surfaces probed by vibrational spectroscopy", Sens. Actuators B, vol. 76, pp. 442-448, 2001. https://doi.org/10.1016/S0925-4005(01)00653-0
  20. S. C. Lee, H. Y. Choi, S. J. Lee, W. S. Lee, J. S. Huh, D. D. Lee, and J. C. Kim, "The development of $SnO_2$- based recoverable gas sensors for the detection of DMMP", Sens. Actuators B, vol. 137, pp. 239-245, 2009. https://doi.org/10.1016/j.snb.2008.12.051
  21. W. S. Lee, S. C. Lee, S. J. Lee, D. D. Lee, J. S. Huh, H. K. Jun, and J. C. Kim, "The sensing behavior of $SnO-2$-based thick-film gas sensors at a low concentration of chemical agent simulants", Sens. Actuators B, vol. 108, pp. 148-153, 2005. https://doi.org/10.1016/j.snb.2005.01.045
  22. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, and J. Szuber, "XPS study of the surface chemistry of L-CVD $SnO_2$ thin films after oxidation", Thin Solid Films, vol. 490, pp. 36-42, 2005. https://doi.org/10.1016/j.tsf.2005.04.014
  23. S. Oswald and W. Bruckner, "XPS depth profile analysis of non-stoichiometric NiO films", Surf. Interface. Anal., vol. 36, pp. 17-22, 2004. https://doi.org/10.1002/sia.1640
  24. F. Garbassi, "XPS and AES study of antimony oxides", Surf. Interface. Anal., vol. 2, pp. 165-169, 1980. https://doi.org/10.1002/sia.740020502
  25. N. Ozer, D-G. Chen, and C. M. Lampert, "Preparation and properties of spin-coated $Nb_2O_5$ films by the solgel process for electrochromic applications", Thin Solid Films, vol. 277, pp. 162-168, 1996. https://doi.org/10.1016/0040-6090(95)08011-2
  26. L. Cao, S. R. Segal, and S. L. Suib, X. Tang, S. Satyapal, "Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides", J. Catalysis, vol. 194, pp. 61-70, 2000. https://doi.org/10.1006/jcat.2000.2914

Cited by

  1. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant vol.221, 2015, https://doi.org/10.1016/j.snb.2015.06.076
  2. Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles /ZnO flowers heterojunction vol.240, 2017, https://doi.org/10.1016/j.snb.2016.09.028
  3. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents vol.48, pp.5, 2018, https://doi.org/10.1080/10408347.2018.1439366