DOI QR코드

DOI QR Code

Synthesis and Sensing Properties of Pd Nanoparticle-Functionalized SnO2 Nanowires

  • Akash, Katoch (School of Materials Science and Engineering, Inha University) ;
  • Choi, Sun-Woo (School of Materials Science and Engineering, Inha University) ;
  • Kim, Eun-Kyeong (School of Materials Science and Engineering, Inha University) ;
  • Kim, Sang-Sub (School of Materials Science and Engineering, Inha University)
  • Received : 2011.07.20
  • Accepted : 2011.09.15
  • Published : 2011.09.30

Abstract

Networked $SnO_2$ nanowires were uniformly functionalized with Pd nanoparticles via ${\gamma}$-ray radiolysis. The Networked $SnO_2$ nanowires were fabricated through a selective growth method. The sensing properties of the Pd-functionalized $SnO_2$ nanowires were analyzed in terms of their response to $NO_2$ and CO gases. The response time and sensitivity of the sensors were significantly improved for $NO_2$ at lower temperatures by the Pd functionalization. The enhancement in the sensing properties is likely to be due to the spillover effect of the Pd nanoparticles.

Keywords

References

  1. M. Law, H. Kind. B Messer, F. Kim, and P. Yang, "Photochemical sensing of $NO_2$ with $SnO_2$ nanoribbon nanosensors at room temperature", Angew. Chem. Int. Ed., vol. 41, pp. 2405-2408, 2002. https://doi.org/10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3
  2. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, and G. W. Yang, "Fabrication of $SnO_2$ nanowire gas sensor and sensor performance for hydrogen", J. Phys. Chem. C, vol. 112, pp. 6643-6647, 2008. https://doi.org/10.1021/jp8003147
  3. W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, and S.-H. Hong, "$SnO_2$ nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance", Nanotechnology, vol. 21, p. 245605, 2010. https://doi.org/10.1088/0957-4484/21/24/245605
  4. J. Y. Park, D. E. Song, and S. S. Kim, "An approach to fabricating chemical sensors based on ZnO nanorod arrays", Nanotechnology, vol. 19, p. 105503, 2008. https://doi.org/10.1088/0957-4484/19/10/105503
  5. C. D. Zorzi, G. Rossetto, D. Calestani, M. Z. Zha, A. Zappettini, L. Lazzarini, M. Villani, N. E. Habra, and L. Zanotti, "Pd/PdO functionalization of $SnO_2$ nanowires and ZnO nanotetrapods", Cryst. Res. Technol., vol. 46, pp. 847-851, 2011. https://doi.org/10.1002/crat.201000650
  6. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sensors, vol. 10, pp. 2088-2106, 2010. https://doi.org/10.3390/s100302088
  7. P. Paiano, P. Prete, E. Speiser, N. Lovergine, W. Richter, L. Tapfer, and A. M. Mancini, "GaAs nanowires grown by Au-catalyst-assisted MOVPE using tertiarybutylarsine as group-V precursor", J. Cryst. Growth, vol. 298, pp. 620-624, 2007. https://doi.org/10.1016/j.jcrysgro.2006.10.107
  8. T. Aichele, A. Tribu, G. Sallen, J. Bocquel, E. B. Amalric, C. Bougerol, J. P. Poizat, K. Kheng, R. Andre, S. Tatarenko, and H. Mariette, "CdSe quantum dots in ZnSe nanowires as efficient source for single photons up to 220 K", J. Cryst. Growth, vol. 311, pp. 2123- 2127, 2009. https://doi.org/10.1016/j.jcrysgro.2008.10.103
  9. S. S. Kim, J. Y. Park, S.-W. Choi, H. S. Kim, H. G. Na, J. C. Yang, C. Lee, and H. W. Kim, "Room temperature sensing properties of networked GaN nanowire sensors to hydrogen enhanced by the $Ga_2Pd_5$ nanodot functionalization", Int. J. Hydrogen Energy, vol. 36, pp. 2313-2329, 2011. https://doi.org/10.1016/j.ijhydene.2010.11.050
  10. S. P. Ramnani, J. Biswal, and S. Sabharwal, "Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis", Radiat. Phys. Chem., vol. 76, pp. 1290-1294, 2007. https://doi.org/10.1016/j.radphyschem.2007.02.074
  11. T. Li, H. G. Park, and S.-H. Choi, "$\gamma$-Irradiationinduced preparation of Ag and Au nanoparticles and their characterizations", Mater. Chem. Phys. vol. 105, pp. 325-330, 2007. https://doi.org/10.1016/j.matchemphys.2007.04.069
  12. S. Chettibi, Y. Benguedouar, and N. Keghouche, "The metal-support interaction in the oxide supported nickel nanoparticles synthesized by radiolysis", Phys. Procedia, vol. 2, pp. 707-712, 2009. https://doi.org/10.1016/j.phpro.2009.11.014
  13. S.-W. Choi, S.-H. Jung, and S. S. Kim, "Functionalization of selectively grown networked $SnO_2$ nanowires with Pd nanodots by $\gamma$-ray radiolysis", Nanotechnology, vol. 22, pp. 225501, 2011. https://doi.org/10.1088/0957-4484/22/22/225501
  14. J. Tamaki, M. Nagaishi, Y. Teraoka, N. Miura, N. Yamazoe, K. Moriya, and Y. Nakamura, "Adsorption behavior of carbon monoxide and interfering gases on tin dioxide", Surf. Sci., vol. 221, pp. 183-196, 1989. https://doi.org/10.1016/0039-6028(89)90574-8
  15. B. Ruhland, T. Becker, and G. Muller, "Gas-kinetic interactions of nitrous oxides with $SnO_2$ surfaces", Sens. Actuators B, vol. 50, pp. 85-94, 1998. https://doi.org/10.1016/S0925-4005(98)00160-9
  16. J.-H. Park, D.-G. Lim, Y.-J. Choi, D.-W. Kim, K.-J. Choi, and J.-G. Park, "Laterally grown $SnO_2$ nanowires and their $NO_2$ gas sensing characteristics", Int. Conf. on Nanotechnology, pp. 1054-1057, Hong Kong, 2007.
  17. J. Y. Park, S.-W. Choi, and S. S. Kim, "Junction-tuned $SnO_2$ nanowires and their sensing properties", J. Phys. Chem. C, vol. 115, pp. 12774-12781, 2011. https://doi.org/10.1021/jp202113x