DOI QR코드

DOI QR Code

Genome-wide Association Study Identified TIMP2 Genetic Variant with Susceptibility to Osteoarthritis

  • Keam, Bhum-Suk (Department of Internal Medicine, Seoul National University Hospital) ;
  • Hwang, Joo-Yeon (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Go, Min-Jin (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Heo, Jee-Yeon (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Park, Mi-Sun (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Lee, Ji-Young (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Kim, Nam-Hee (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Park, Miey (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Oh, Ji-Hee (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Kim, Dong-Hyun (Department of Social and Preventive Medicine, College of Medicine, Hallym University) ;
  • Jeong, Jin-Young (Institute of Aging, Hallym University) ;
  • Lee, Jong-Young (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Han, Bok-Ghee (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex) ;
  • Lee, Ju-Young (Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex)
  • Accepted : 2011.07.01
  • Published : 2011.09.30

Abstract

Osteoarthritis (OA) is the most common degenerative joint disorder in the elderly population. To identify OA-associated genetic variants and candidate genes, we conducted a genome-wide association study (GWAS). A total 3,793 samples (476 cases: wrist + knee and 3317 controls) from a community-based epidemiological study were genotyped using the Affymetrix SNP 5.0. An intronic SNP (rs4789934) in the TIMP2 (tissue inhibitor of metalloproteinase-2) showed the most significance with OA (odd ratio [OR] = 2.06, 95% confidence interval [CI] = 1.52-2.81, p = $4.01{\times}10^{-6}$). Furthermore, a poly-morphism (rs1352677) in the NKAIN2 ($Na^+/K^+$ transporting ATPase interacting 2) was suggestively associated with OA (OR = 1.43, CI = 1.22-1.66, p = $7.01{\times}10^{-6}$). The present study provides new insights into the identification of genetic predisposing factors for OA.

Keywords

References

  1. Abel, K., Reneland, R., Kammerer, S., Mah, S., Hoyal, C., Cantor, C.R., Nelson, M.R., and Braun, A. (2006). Genome-wide SNP association: identification of susceptibility alleles for osteoarthritis. Autoimmun. Rev. 5, 258-263. https://doi.org/10.1016/j.autrev.2005.07.005
  2. Cawston, T. (1998). Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases. Mol. Med. Today 4, 130-137. https://doi.org/10.1016/S1357-4310(97)01192-1
  3. Cho, N., Joo, S., Kim, J., Abbott, R.D., Kimm, K., and Shin, C. (2006). Relation of habitual snoring with components of metabolic syndrome in Korean adults. Diabetes Res. Clin Pract. 71, 256-263. https://doi.org/10.1016/j.diabres.2005.06.011
  4. Cho, Y.S., Go, M.J., Kim, Y.J., Heo, J.Y., Oh, J.H., Ban, H.J., Yoon, D., Lee, M.H., Kim, D.J., Park, M., Cha, S.H., Kim, J.W., Han, B.G., Min, H., Ahn, Y., Park, M.S., Han, H.R., Jang, H.Y., Cho, E.Y., Lee, J.E., Cho, N.H., Shin, C., Park, T., Park, J.W., Lee, J.K., Cardon, L., Clarke, G., McCarthy, M.I., Lee, J.Y., Oh, B., and Kim, H.L. (2009). A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527-534. https://doi.org/10.1038/ng.357
  5. Clayton, D.G., Walker, N.M., Smyth, D.J., Pask, R., Cooper, J.D., Maier, L.M., Smink, L.J., Lam, A.C., Ovington, N.R., Stevens, H.E., Nutland, S., Howson, J.M., Faham, M., Moorhead, M., Jones, H.B., Falkowski, M., Hardenbol, P., Willis, T.D., and Todd, J.A. (2005). Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243-1246. https://doi.org/10.1038/ng1653
  6. Dai, J., and Ikegawa, S. (2010). Recent advances in association studies of osteoarthritis susceptibility genes. J. Hum. Genet. 55, 77-80. https://doi.org/10.1038/jhg.2009.137
  7. Du, H., Chen, S.L., Bao, C.D., Wang, X.D., Lu, Y., Gu, Y.Y., Xu, J.R., Chai, W.M., Chen, J., Nakamura, H., and Nishioka, K. (2005). Prevalence and risk factors of knee osteoarthritis in Huang-Pu District, Shanghai, China. Rheumatol. Int. 25, 585-590. https://doi.org/10.1007/s00296-004-0492-7
  8. Francis, M.J., Lees, R.L., Trujillo, E., Martin-Vasallo, P., Heersche, J.N., and Mobasheri, A. (2002). ATPase pumps in osteoclasts and osteoblasts. Int. J. Biochem. Cell. Biol. 34, 459-476. https://doi.org/10.1016/S1357-2725(01)00142-X
  9. Haq, I., Murphy, E., and Dacre, J. (2003). Osteoarthritis. Postgrad. Med. J. 79, 377-383. https://doi.org/10.1136/pmj.79.933.377
  10. Ikegawa, S. (2007). New gene associations in osteoarthritis: what do they provide, and where are we going? Curr. Opin. Rheumatol. 19, 429-434. https://doi.org/10.1097/BOR.0b013e32825b079d
  11. Jiang, Q., Shi, D., Nakajima, M., Dai, J., Wei, J., Malizos, K.N., Qin, J., Miyamoto, Y., Kamatani, N., Liu, B., Tsezou, A., Nakamura, T., and Ikegawa, S. (2008). Lack of association of single nucleotide polymorphism in LRCH1 with knee osteoarthritis susceptibility. J. Hum. Genet. 53, 42-47. https://doi.org/10.1007/s10038-007-0216-4
  12. Kellgren, J.H., and Lawrence, J.S. (1957). Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494-502. https://doi.org/10.1136/ard.16.4.494
  13. Kerkhof, J.M., Uitterlinden, A.G., Valdes, A.M., Hart, D.J., Rivadeneira, F., Jhamai, M., Hofman, A., Pols, H.A., Bierma-Zeinstra, S.M., Spector, T.D., and van Meurs, J.B. (2008). Radiographic osteoarthritis at three joint sites and FRZB, LRP5, and LRP6 polymorphisms in two population- based cohorts. Osteoarthritis. Cartilage. 16, 1141-1149. https://doi.org/10.1016/j.joca.2008.02.007
  14. Kim, B.G., Park, J.T., Ahn, Y., Kimm, K., and Shin, C. (2005). Geographical difference in the prevalence of isolated systolic hypertension in middle-aged men and women in Korea: the Korean Health and Genome Study. J. Hum. Hypertens. 19, 877-883. https://doi.org/10.1038/sj.jhh.1001904
  15. Krane, S.M., and Inada, M. (2008). Matrix metalloproteinases and bone. Bone. 43, 7-18. https://doi.org/10.1016/j.bone.2008.03.020
  16. Lee, H.J., Lee, G.H., Nah, S., Lee, K.H., Yang, H., Kim, Y.M., Chun, W., Hong, S., and Kim, S. (2008). Association of TIMP-4 gene polymorphism with the risk of osteoarthritis in the Korean population. Rheumatol. Int. 28, 845-850. https://doi.org/10.1007/s00296-008-0545-4
  17. Lee, P.H., and Shatkay, H. (2009). An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics 25, 1048-1055. https://doi.org/10.1093/bioinformatics/btp103
  18. Lee, Y.J., Lee, E.B., Kwon, Y.E., Lee, J.J., Cho, W.S., Kim, H.A., and Song, Y.W. (2003). Effect of estrogen on the expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 and tissue inhibitor of metalloproternase-1 in osteoarthritis chondrocytes. Rheumatol. Int. 23, 282-288. https://doi.org/10.1007/s00296-003-0312-5
  19. Lim, S., Jang, H.C., Lee, H.K., Kimm, KC., Park, C., and Cho, N.H. (2006). A rural-urban comparison of the characteristics of the metabolic syndrome by gender in Korea: the Korean Health and Genome Study (KHGS). J. Endocrinol. Invest. 29, 313-319. https://doi.org/10.1007/BF03344102
  20. Loughlin, J. (2002). Genome studies and linkage in primary osteoarthritis. Rheum. Dis. Clin. North. Am. 28, 95-109. https://doi.org/10.1016/S0889-857X(03)00071-1
  21. MacGregor, A.J., and Spector, T.D. (1999). Twins and the genetic architecture of osteoarthritis. Rheumatology. 38, 583-588. https://doi.org/10.1093/rheumatology/38.7.583
  22. Martel-Pelletier, J., McCollum, R., Fujimoto, N., Obata, K., Cloutier, J.M., and Pelletier, J.P. (1994). Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab. Invest. 70, 807-815.
  23. Miyamoto, Y., Mabuchi, A., Shi, D., Kubo, T., Takatori, Y., Saito, S., Fujioka, M., Sudo, A., Uchida, A., Yamamoto, S., Ozaki, K., Takigawa, M., Tanaka, T., Nakamura, Y., Jiang, Q., and Ikegawa, S. (2007). A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet. 39, 529-533. https://doi.org/10.1038/2005
  24. Mobasheri, A., Avila, J., Cozar-Castellano, I., Brownleader, M.D., Trevan, M., Francis, M.J., Lamb, J.F., and Martin-Vasallo, P. (2000). Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep. 20, 51-91. https://doi.org/10.1023/A:1005580332144
  25. Mototani, H., Mabuchi, A., Saito, S., Fujioka, M., Iida, A., Takatori, Y., Kotani, A., Kubo, T., Nakamura, K., Sekine, A., Murakami, Y., Tsunoda, T., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005). A functional single nucleotide polymorphism in the core promoter region of CALM1 is associated with hip osteoarthritis in Japanese. Hum. Mol. Genet. 14, 1009-1017. https://doi.org/10.1093/hmg/ddi093
  26. Peach, C.A., Carr, A.J., and Loughlin, J. (2005). Recent advances in the genetic investigation of osteoarthritis. Trends. Mol. Med. 11, 186-191. https://doi.org/10.1016/j.molmed.2005.02.005
  27. Rabbee, N., and Speed, T.P. (2006). A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22, 7-12. https://doi.org/10.1093/bioinformatics/bti741
  28. Rodriguez-Lopez, J., Mustafa, Z., Pombo-Suarez, M., Malizos, K.N., Rego, I., Blanco, F.J., Tsezou, A., Loughlin, J., Gomez-Reino, J.J., and Gonzalez, A. (2008). Genetic variation including nonsynonymous polymorphisms of a major aggrecanase, ADAMTS-5, in susceptibility to osteoarthritis. Arthritis. Rheum. 58, 435-441. https://doi.org/10.1002/art.23201
  29. Shi, D., Ni, H., Dai, J., Qin, J., Xu, Y., Zhu, L., Yao, C., Shao, Z., Chen, D., Xu, Z., Yi, L., Ikegawa, S., and Jiang, Q. (2008). Lack of association between the CALM1 core promoter polymorphism (-16C/T) and susceptibility to knee osteoarthritis in a Chinese Han population. BMC Med. Genet. 9, 91.
  30. Snelling, S., Sinsheimer, J.S., Carr, A., and Loughlin, J. (2007). Genetic association analysis of LRCH1 as an osteoarthritis susceptibility locus. Rheumatology 46, 250-252.
  31. Spector, T.D., Reneland, R.H., Mah, S., Valdes, A.M., Hart, D.J., Kammerer, S., Langdown, M., Hoyal, C.R., Atienza, J., Doherty, M., Rahman, P., Nelson, M.R., and Braun, A. (2006). Association between a variation in LRCH1 and knee osteoarthritis: a genome-wide single-nucleotide polymorphism association study using DNA pooling. Arthritis. Rheum. 54, 524-532. https://doi.org/10.1002/art.21624
  32. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L.J., and von Mering, C. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic. Acids. Res. 39, 561-568. https://doi.org/10.1093/nar/gkq973
  33. Valdes, A.M., Loughlin, J., Oene, M.V., Chapman, K., Surdulescu, G.L., Doherty, M., and Spector, T.D. (2007). Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis. Rheum. 56, 137-146. https://doi.org/10.1002/art.22301
  34. Weiss, K.E., and Rodner, C.M. (2007). Osteoarthritis of the wrist. J. Hand. Surg. Am. 32, 725-746. https://doi.org/10.1016/j.jhsa.2007.02.003
  35. Yuan, H.Y., Chiou, J.J., Tseng, W.H., Liu, C.H., Liu, C.K., Lin, Y.J., Wang, H.H., Yao, A., Chen, Y.T., and Hsu, C.N. (2006). FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic. Acids. Res. 34, 635-641. https://doi.org/10.1093/nar/gkj469